Search results
Results from the WOW.Com Content Network
It can convert a wide range of complex data structures, including dict, array, numpy ndarray, into JData representations and export the data as JSON or UBJSON files. The BJData Python module, pybj, [4] enabling reading/writing BJData/UBJSON files, is also available on PyPI, Debian/Ubuntu and GitHub.
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
An extension of netCDF for parallel computing called Parallel-NetCDF (or PnetCDF) has been developed by Argonne National Laboratory and Northwestern University. [28] This is built upon MPI-IO, the I/O extension to MPI communications. Using the high-level netCDF data structures, the Parallel-NetCDF libraries can make use of optimizations to ...
CuPy is a part of the NumPy ecosystem array libraries [7] and is widely adopted to utilize GPU with Python, [8] especially in high-performance computing environments such as Summit, [9] Perlmutter, [10] EULER, [11] and ABCI.
MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages. Although MATLAB is intended primarily for numeric computing, an optional toolbox uses the MuPAD symbolic engine allowing access to symbolic computing abilities.
Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.