enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    Random forests or random decision forests is an ensemble learning method for classification, regression and other tasks that works by creating a multitude of decision trees during training. For classification tasks, the output of the random forest is the class selected by most trees.

  3. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  4. Symbolic regression - Wikipedia

    en.wikipedia.org/wiki/Symbolic_regression

    Evolutionary Forest is a Genetic Programming-based automated feature construction algorithm for symbolic regression. [15] [16] uDSR is a deep learning framework for symbolic optimization tasks [17] dCGP, differentiable Cartesian Genetic Programming in python (free, open source) [18] [19]

  5. Random subspace method - Wikipedia

    en.wikipedia.org/wiki/Random_subspace_method

    The random subspace method has been used for decision trees; when combined with "ordinary" bagging of decision trees, the resulting models are called random forests. [5] It has also been applied to linear classifiers , [ 6 ] support vector machines , [ 7 ] nearest neighbours [ 8 ] [ 9 ] and other types of classifiers.

  6. Jackknife variance estimates for random forest - Wikipedia

    en.wikipedia.org/wiki/Jackknife_Variance...

    In statistics, jackknife variance estimates for random forest are a way to estimate the variance in random forest models, in order to eliminate the bootstrap effects.

  7. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    In statistics, linear regression is a model that estimates the linear relationship between a scalar response (dependent variable) and one or more explanatory variables (regressor or independent variable).

  8. Gradient boosting - Wikipedia

    en.wikipedia.org/wiki/Gradient_boosting

    [1] [2] When a decision tree is the weak learner, the resulting algorithm is called gradient-boosted trees; it usually outperforms random forest. [1] As with other boosting methods, a gradient-boosted trees model is built in stages, but it generalizes the other methods by allowing optimization of an arbitrary differentiable loss function.

  9. Nonlinear regression - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_regression

    See Michaelis–Menten kinetics for details . In statistics, nonlinear regression is a form of regression analysis in which observational data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables.