Search results
Results from the WOW.Com Content Network
To avoid the problems with non-uniform sized or shaped clusters, CURE employs a hierarchical clustering algorithm that adopts a middle ground between the centroid based and all point extremes. In CURE, a constant number c of well scattered points of a cluster are chosen and they are shrunk towards the centroid of the cluster by a fraction α.
The algorithm puts parent processes in the same task group as child processes. [7] (Task groups are tied to sessions created via the setsid() system call. [8]) This solved the problem of slow interactive response times on multi-core and multi-CPU systems when they were performing other tasks that use many CPU-intensive threads in those tasks.
The theoretically optimal page replacement algorithm (also known as OPT, clairvoyant replacement algorithm, or Bélády's optimal page replacement policy) [3] [4] [2] is an algorithm that works as follows: when a page needs to be swapped in, the operating system swaps out the page whose next use will occur farthest in the future. For example, a ...
There is no universal best scheduling algorithm, and many operating systems use extended or combinations of the scheduling algorithms above. For example, Windows NT /XP/Vista uses a multilevel feedback queue , a combination of fixed-priority preemptive scheduling, round-robin, and first in, first out algorithms.
Location of the "O(1) scheduler" (a process scheduler) in a simplified structure of the Linux kernel. An O(1) scheduler (pronounced "O of 1 scheduler", "Big O of 1 scheduler", or "constant time scheduler") is a kernel scheduling design that can schedule processes within a constant amount of time, regardless of how many processes are running on the operating system.
Earliest deadline first (EDF) or least time to go is a dynamic priority scheduling algorithm used in real-time operating systems to place processes in a priority queue. Whenever a scheduling event occurs (task finishes, new task released, etc.) the queue will be searched for the process closest to its deadline.
The LRU algorithm cannot be implemented in the critical path of computer systems, such as operating systems, due to its high overhead; Clock, an approximation of LRU, is commonly used instead. Clock-Pro is an approximation of LIRS for low-cost implementation in systems. [ 13 ]
Concurrent data structures are significantly more difficult to design and to verify as being correct than their sequential counterparts. The primary source of this additional difficulty is concurrency, exacerbated by the fact that threads must be thought of as being completely asynchronous: they are subject to operating system preemption, page faults, interrupts, and so on.