Search results
Results from the WOW.Com Content Network
Comparison functions are primarily used to obtain quantitative restatements of stability properties as Lyapunov stability, uniform asymptotic stability, etc. These restatements are often more useful than the qualitative definitions of stability properties given in ε - δ {\displaystyle \varepsilon {\text{-}}\delta } language.
Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.
In mathematics and computer science, a higher-order function (HOF) is a function that does at least one of the following: takes one or more functions as arguments (i.e. a procedural parameter, which is a parameter of a procedure that is itself a procedure), returns a function or value as its result. All other functions are first-order functions.
In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. [1] The set X is called the domain of the function [2] and the set Y is called the codomain of the function. [3] Functions were originally the idealization of how a varying quantity depends on another quantity.
When n = 3, a level set is called a level surface (or isosurface); so a level surface is the set of all real-valued roots of an equation in three variables x 1, x 2 and x 3. For higher values of n , the level set is a level hypersurface , the set of all real-valued roots of an equation in n > 3 variables.
In mathematics, a homogeneous function is a function of several variables such that the following holds: If each of the function's arguments is multiplied by the same scalar, then the function's value is multiplied by some power of this scalar; the power is called the degree of homogeneity, or simply the degree.
That is, if f, g, and h are composable, then f ∘ (g ∘ h) = (f ∘ g) ∘ h. [2] Since the parentheses do not change the result, they are generally omitted. In a strict sense, the composition g ∘ f is only meaningful if the codomain of f equals the domain of g ; in a wider sense, it is sufficient that the former be an improper subset of ...
In mathematics, the Fox H-function H(x) is a generalization of the Meijer G-function and the Fox–Wright function introduced by Charles Fox . It is defined by a Mellin–Barnes integral H p , q m , n [ z | ( a 1 , A 1 ) ( a 2 , A 2 ) …