enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Oxidation state - Wikipedia

    en.wikipedia.org/wiki/Oxidation_state

    Oxidation states are typically represented by integers which may be positive, zero, or negative. In some cases, the average oxidation state of an element is a fraction, such as ⁠ 8 / 3 ⁠ for iron in magnetite Fe 3 O 4 . The highest known oxidation state is reported to be +9, displayed by iridium in the tetroxoiridium(IX) cation (IrO + 4). [1]

  3. Redox - Wikipedia

    en.wikipedia.org/wiki/Redox

    Redox (/ ˈ r ɛ d ɒ k s / RED-oks, / ˈ r iː d ɒ k s / REE-doks, reduction–oxidation [2] or oxidation–reduction [3]: 150 ) is a type of chemical reaction in which the oxidation states of the reactants change. [4] Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...

  4. Template:List of oxidation states of the elements - Wikipedia

    en.wikipedia.org/wiki/Template:List_of_oxidation...

    The oxidation states are also maintained in articles of the elements (of course), and systematically in the table {{Infobox element/symbol-to-oxidation-state}}

  5. Oxidizing agent - Wikipedia

    en.wikipedia.org/wiki/Oxidizing_agent

    The international pictogram for oxidizing chemicals. Dangerous goods label for oxidizing agents. An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent (called the reductant, reducer, or electron donor).

  6. Reduction potential - Wikipedia

    en.wikipedia.org/wiki/Reduction_potential

    In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...

  7. Oxidative addition - Wikipedia

    en.wikipedia.org/wiki/Oxidative_addition

    Oxidative addition is favored for metals that are (i) basic and/or (ii) easily oxidized. Metals with a relatively low oxidation state often satisfy one of these requirements, but even high oxidation state metals undergo oxidative addition, as illustrated by the oxidation of Pt(II) with chlorine: [PtCl 4] 2− + Cl 2 → [PtCl 6] 2−

  8. Sulfur cycle - Wikipedia

    en.wikipedia.org/wiki/Sulfur_cycle

    Sulfur can be found under several oxidation states in nature, mainly −2, −1, 0, +2 (apparent), +2.5 (apparent), +4, and +6. When two sulfur atoms are present in the same polyatomic oxyanion in an asymmetrical situation, i.e, each bound to different groups as in thiosulfate, the oxidation state calculated from the known oxidation state of accompanying atoms (H = +1, and O = −2) can be an ...

  9. Inert-pair effect - Wikipedia

    en.wikipedia.org/wiki/Inert-pair_effect

    The inert-pair effect is the tendency of the two electrons in the outermost atomic s-orbital to remain unshared in compounds of post-transition metals.The term inert-pair effect is often used in relation to the increasing stability of oxidation states that are two less than the group valency for the heavier elements of groups 13, 14, 15 and 16.