Search results
Results from the WOW.Com Content Network
Bicycle and motorcycle dynamics is the science of the motion of bicycles and motorcycles and their components, due to the forces acting on them. Dynamics falls under a branch of physics known as classical mechanics. Bike motions of interest include balancing, steering, braking, accelerating, suspension activation, and vibration. The study of ...
The angular momentum of m is proportional to the perpendicular component v ⊥ of the velocity, or equivalently, to the perpendicular distance r ⊥ from the origin. Angular momentum is a vector quantity (more precisely, a pseudovector) that represents the product of a body's rotational inertia and rotational velocity (in radians/sec) about a ...
Given the object's fixed internal moment of inertia tensor I 0 and fixed external angular momentum L, the instantaneous angular velocity is = Precession occurs by repeatedly recalculating ω and applying a small rotation vector ω dt for the short time dt; e.g.: = ([()]) for the skew-symmetric matrix [ω] ×.
A diagram of angular momentum. Showing angular velocity (Scalar) and radius. In physics, angular mechanics is a field of mechanics which studies rotational movement. It studies things such as angular momentum, angular velocity, and torque. It also studies more advanced things such as Coriolis force [1] and Angular aerodynamics.
They introduce a generalized momentum, also known as the canonical momentum or conjugate momentum, that extends the concepts of both linear momentum and angular momentum. To distinguish it from generalized momentum, the product of mass and velocity is also referred to as mechanical momentum, kinetic momentum or kinematic momentum.
When Newton's laws are applied to rotating extended bodies, they lead to new quantities that are analogous to those invoked in the original laws. The analogue of mass is the moment of inertia, the counterpart of momentum is angular momentum, and the counterpart of force is torque. Angular momentum is calculated with respect to a reference point ...
The greater the angular momentum of the spinning object such as a top, the greater its tendency to continue to spin. The angular momentum of a rotating body is proportional to its mass and to how rapidly it is turning. In addition, the angular momentum depends on how the mass is distributed relative to the axis of rotation: the further away the ...
Provided the suspension electronics remain powered, the extreme rotational symmetry, lack of friction, and low drag will allow the angular momentum of the rotor to keep it spinning for about 15,000 years. [62] A sensitive DC SQUID that can discriminate changes as small as one quantum, or about 2 × 10 −15 Wb, is used to monitor the gyroscope.