Search results
Results from the WOW.Com Content Network
The circle diagram can be drawn for alternators, synchronous motors, transformers, induction motors. The Heyland diagram is an approximate representation of a circle diagram applied to induction motors, which assumes that stator input voltage, rotor resistance and rotor reactance are constant and stator resistance and core loss are zero.
The sequence of events is similar for manual or automatic synchronization. The generator is brought up to approximate synchronous speed by supplying more energy to its shaft - for example, opening the valves on a steam turbine, opening the gates on a hydraulic turbine, or increasing the fuel rack setting on a diesel engine. The field of the ...
In synchronous machines, the V curve (also spelled as V-curve) is the graph showing the relation of armature current as a function of field current in synchronous motors keeping the load constant. The name comes from an observation made by W. M. Mordey in 1893 that the curve resembles a letter V. [ 1 ]
The curve represents a boundary of all operating points in the MW/MVAr plane; it is typically drawn with the real power on the horizontal axis, and, for the synchronous generator, resembles a letter D in shape, thus another name for the same curve, D-curve. In some sources the axes are switched, and the curve gets a dome-shaped appearance.
The synchronous reactances are exhibited by the armature in the steady-state operation of the machine. [8] The three-phase system is viewed as a superposition of two: the direct one, where the maximum of the phase current is reached when the pole is oriented towards the winding and the quadrature one, that is 90° offset.
In a synchronous generator, [1] the short circuit ratio is the ratio of field current required to produce rated armature voltage at the open circuit to the field current required to produce the rated armature current at short circuit. [1] [2] This ratio can also be expressed as an inverse of the saturated [3] direct-axis synchronous reactance ...
A permanent magnet synchronous generator is a generator where the excitation field is provided by a permanent magnet instead of a coil. The term synchronous refers here to the fact that the rotor and magnetic field rotate with the same speed, because the magnetic field is generated through a shaft-mounted permanent magnet mechanism, and current is induced into the stationary armature.
This response in case of a synchronous generator is built-in into the design and happens without any external intervention or coordination, providing the automatic generation control and the grid operator with valuable time (few seconds) to rebalance the system [1] The grid frequency is the combined result of the detailed motions of all ...