Search results
Results from the WOW.Com Content Network
In mathematics, Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. They are named after the mathematician George Green , who discovered Green's theorem .
There are two lists of mathematical identities related to vectors: Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
This article lists mathematical identities, that is, identically true relations holding in mathematics. Bézout's identity (despite its usual name, it is not, properly speaking, an identity) Binet-cauchy identity
In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in R 3 {\displaystyle \mathbb {R} ^{3}} ).
For elements a and b of S, Green's relations L, R and J are defined by . a L b if and only if S 1 a = S 1 b.; a R b if and only if a S 1 = b S 1.; a J b if and only if S 1 a S 1 = S 1 b S 1.; That is, a and b are L-related if they generate the same left ideal; R-related if they generate the same right ideal; and J-related if they generate the same two-sided ideal.
List of logarithmic identities; List of mathematical functions; List of mathematical identities; List of mathematical proofs; List of misnamed theorems; List of scientific laws; List of theories; Most of the results below come from pure mathematics, but some are from theoretical physics, economics, and other applied fields.
This category is for mathematical identities, i.e. identically true relations holding in some area of algebra (including abstract algebra, or formal power series). Subcategories This category has only the following subcategory.
In mathematics, a Green's function (sometimes improperly termed a Green function) is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions.