enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert–Schmidt operator - Wikipedia

    en.wikipedia.org/wiki/Hilbert–Schmidt_operator

    The Hilbert–Schmidt operators form a two-sided *-ideal in the Banach algebra of bounded operators on H. They also form a Hilbert space, denoted by B HS (H) or B 2 (H), which can be shown to be naturally isometrically isomorphic to the tensor product of Hilbert spaces, where H ∗ is the dual space of H.

  3. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    A real inner product space is defined in the same way, except that H is a real vector space and the inner product takes real values. Such an inner product will be a bilinear map and ( H , H , ⋅ , ⋅ ) {\displaystyle (H,H,\langle \cdot ,\cdot \rangle )} will form a dual system .

  4. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar , often denoted with angle brackets such as in a , b {\displaystyle \langle a,b\rangle } .

  5. Trace class - Wikipedia

    en.wikipedia.org/wiki/Trace_class

    Recall that every compact operator on a Hilbert space takes the following canonical form: there exist orthonormal bases () and () and a sequence () of non-negative numbers with such that = , . Making the above heuristic comments more precise, we have that is trace-class iff the series is convergent, is Hilbert–Schmidt iff is convergent, and ...

  6. Gelfand–Naimark–Segal construction - Wikipedia

    en.wikipedia.org/wiki/Gelfand–Naimark–Segal...

    The quotient space of by the vector subspace is an inner product space with the inner product defined by +, + := (),,, which is well-defined due to the Cauchy–Schwarz inequality. The Cauchy completion of A / I {\displaystyle A/I} in the norm induced by this inner product is a Hilbert space, which we denote by H {\displaystyle H} .

  7. Normed vector space - Wikipedia

    en.wikipedia.org/wiki/Normed_vector_space

    An inner product space is a normed vector space whose norm is the square root of the inner product of a vector and itself. The Euclidean norm of a Euclidean vector space is a special case that allows defining Euclidean distance by the formula d ( A , B ) = ‖ A B → ‖ . {\displaystyle d(A,B)=\|{\overrightarrow {AB}}\|.}

  8. Unitary operator - Wikipedia

    en.wikipedia.org/wiki/Unitary_operator

    Thus, unitary operators are just automorphisms of Hilbert spaces, i.e., they preserve the structure (the vector space structure, the inner product, and hence the topology) of the space on which they act. The group of all unitary operators from a given Hilbert space H to itself is sometimes referred to as the Hilbert group of H, denoted Hilb(H ...

  9. Normal operator - Wikipedia

    en.wikipedia.org/wiki/Normal_operator

    If a normal operator T on a finite-dimensional real [clarification needed] or complex Hilbert space (inner product space) H stabilizes a subspace V, then it also stabilizes its orthogonal complement V ⊥. (This statement is trivial in the case where T is self-adjoint.) Proof. Let P V be the orthogonal projection onto V.