enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bohr equation - Wikipedia

    en.wikipedia.org/wiki/Bohr_equation

    The Bohr equation, named after Danish physician Christian Bohr (1855–1911), describes the amount of physiological dead space in a person's lungs. This is given as a ratio of dead space to tidal volume. It differs from anatomical dead space as measured by Fowler's method as it includes alveolar dead space.

  3. Dead space (physiology) - Wikipedia

    en.wikipedia.org/wiki/Dead_space_(physiology)

    Mechanical dead space or external dead space is volume in the passages of a breathing apparatus in which the breathing gas flows in both directions as the user breathes in and out, causing the last exhaled gas to be immediately inhaled on the next breath, increasing the necessary tidal volume and respiratory effort to get the same amount of ...

  4. Minute ventilation - Wikipedia

    en.wikipedia.org/wiki/Minute_ventilation

    Minute ventilation (or respiratory minute volume or minute volume) is the volume of gas inhaled (inhaled minute volume) or exhaled (exhaled minute volume) from a person's lungs per minute. It is an important parameter in respiratory medicine due to its relationship with blood carbon dioxide levels. It can be measured with devices such as a ...

  5. VD/VT - Wikipedia

    en.wikipedia.org/wiki/VD/VT

    In medicine, the ratio of physiologic dead space over tidal volume (V D /V T) is a routine measurement, expressing the ratio of dead-space ventilation (V D) to tidal ventilation (V T), as in physiologic research or the care of patients with respiratory disease. [1]

  6. Shunt equation - Wikipedia

    en.wikipedia.org/wiki/Shunt_equation

    The Shunt equation (also known as the Berggren equation) quantifies the extent to which venous blood bypasses oxygenation in the capillaries of the lung.. “Shunt” and “dead space“ are terms used to describe conditions where either blood flow or ventilation do not interact with each other in the lung, as they should for efficient gas exchange to take place.

  7. Alveolar gas equation - Wikipedia

    en.wikipedia.org/wiki/Alveolar_gas_equation

    The partial pressure of oxygen (pO 2) in the pulmonary alveoli is required to calculate both the alveolar-arterial gradient of oxygen and the amount of right-to-left cardiac shunt, which are both clinically useful quantities. However, it is not practical to take a sample of gas from the alveoli in order to directly measure the partial pressure ...

  8. Lung volumes and capacities - Wikipedia

    en.wikipedia.org/wiki/Lung_volumes_and_capacities

    TLC: Total lung capacity: the volume in the lungs at maximal inflation, the sum of VC and RV. TV: Tidal volume: that volume of air moved into or out of the lungs in 1 breath (TV indicates a subdivision of the lung; when tidal volume is precisely measured, as in gas exchange calculation, the symbol TV or V T is used.)

  9. Ventilation/perfusion ratio - Wikipedia

    en.wikipedia.org/wiki/Ventilation/perfusion_ratio

    In respiratory physiology, the ventilation/perfusion ratio (V/Q ratio) is a ratio used to assess the efficiency and adequacy of the ventilation-perfusion coupling and thus the matching of two variables: V – ventilation – the air that reaches the alveoli; Q – perfusion – the blood that reaches the alveoli via the capillaries