enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    [c] Essentially, backpropagation evaluates the expression for the derivative of the cost function as a product of derivatives between each layer from right to left – "backwards" – with the gradient of the weights between each layer being a simple modification of the partial products (the "backwards propagated error").

  3. Automatic differentiation - Wikipedia

    en.wikipedia.org/wiki/Automatic_differentiation

    Automatic differentiation is a subtle and central tool to automatize the simultaneous computation of the numerical values of arbitrarily complex functions and their derivatives with no need for the symbolic representation of the derivative, only the function rule or an algorithm thereof is required [3] [4]. Auto-differentiation is thus neither ...

  4. Backpropagation through time - Wikipedia

    en.wikipedia.org/wiki/Backpropagation_through_time

    Back_Propagation_Through_Time(a, y) // a[t] is the input at time t. y[t] is the output Unfold the network to contain k instances of f do until stopping criterion is met: x := the zero-magnitude vector // x is the current context for t from 0 to n − k do // t is time. n is the length of the training sequence Set the network inputs to x, a[t ...

  5. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    This can perform significantly better than "true" stochastic gradient descent described, because the code can make use of vectorization libraries rather than computing each step separately as was first shown in [6] where it was called "the bunch-mode back-propagation algorithm". It may also result in smoother convergence, as the gradient ...

  6. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    In machine learning, the vanishing gradient problem is encountered when training neural networks with gradient-based learning methods and backpropagation. In such methods, during each training iteration, each neural network weight receives an update proportional to the partial derivative of the loss function with respect to the current weight. [1]

  7. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    The perceptron uses the Heaviside step function as the activation function (), and that means that ′ does not exist at zero, and is equal to zero elsewhere, which makes the direct application of the delta rule impossible.

  8. Rprop - Wikipedia

    en.wikipedia.org/wiki/Rprop

    Rprop, short for resilient backpropagation, is a learning heuristic for supervised learning in feedforward artificial neural networks. This is a first-order optimization algorithm. This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992. [1]

  9. Adjoint state method - Wikipedia

    en.wikipedia.org/wiki/Adjoint_state_method

    The derivative of with respect to yields the state equation as shown before, and the state variable is =. The derivative of L {\displaystyle {\mathcal {L}}} with respect to u {\displaystyle u} is equivalent to the adjoint equation, which is, for every δ u ∈ R m {\displaystyle \delta _{u}\in \mathbb {R} ^{m}} ,