enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Boyle's law - Wikipedia

    en.wikipedia.org/wiki/Boyle's_law

    For a fixed mass of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional. [2] Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant.

  3. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  4. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure.

  5. Van der Waals equation - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_equation

    Thus he argued that in his case the attractive pressure was proportional to the square of the density. [13] The proportionality constant, ⁠ ⁠, when written in the form used above, has the dimension [pv 2] (pressure times molar volume squared), which is also molar energy times molar volume.

  6. Cubic equations of state - Wikipedia

    en.wikipedia.org/wiki/Cubic_equations_of_state

    The van der Waals equation of state may be written as (+) =where is the absolute temperature, is the pressure, is the molar volume and is the universal gas constant.Note that = /, where is the volume, and = /, where is the number of moles, is the number of particles, and is the Avogadro constant.

  7. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    The following assumptions must be met for this Bernoulli equation to apply: [2]: 265 the flow must be steady, that is, the flow parameters (velocity, density, etc.) at any point cannot change with time, the flow must be incompressible—even though pressure varies, the density must remain constant along a streamline;

  8. Knudsen number - Wikipedia

    en.wikipedia.org/wiki/Knudsen_number

    is the static pressure [M 1 L −1 T −2], is the specific gas constant [L 2 T −2 θ −1] (287.05 J/(kg K) for air), is the density [M 1 L −3]. If the temperature is increased, but the volume kept constant, then the Knudsen number (and the mean free path) doesn't change (for an ideal gas). In this case, the density stays the same.

  9. Jurin's law - Wikipedia

    en.wikipedia.org/wiki/Jurin's_Law

    At the meniscus interface, due to the surface tension, there is a pressure difference of =, where is the pressure on the convex side; and is known as Laplace pressure. If the tube has a circular section of radius r 0 {\displaystyle r_{0}} , and the meniscus has a spherical shape, the radius of curvature is r = r 0 / cos ⁡ θ {\displaystyle r ...