Search results
Results from the WOW.Com Content Network
An oblique shock at the nose of a T-38 aircraft is made visible through Schlieren photography. An oblique shock wave is a shock wave that, unlike a normal shock, is inclined with respect to the direction of incoming air. It occurs when a supersonic flow encounters a corner that effectively turns the flow into itself and compresses. [1]
The Lockheed Martin X-59 Quesst ("Quiet SuperSonic Technology"), sometimes styled QueSST, is an American experimental supersonic aircraft under development by Skunk Works for NASA's Low-Boom Flight Demonstrator project. [2] Preliminary design started in February 2016, with the X-59 planned to begin flight testing in 2021.
A shock stall is a stall created when the airflow over an aircraft's wings is disturbed by shock waves formed when flying at or above the aircraft's drag divergence Mach number. Shock stall may cause control problem during speed transition (transonic to supersonic). Thin supercritical wing section and swept-back wing can postpone shock stall to ...
Although shock waves are typically associated with supersonic flow, they can form at subsonic aircraft speeds on areas of the body where local airflow accelerates to supersonic speed. The effect is typically seen on aircraft at transonic speeds (about Mach 0.8 ), but it is possible to notice the problem at any speed over that of the critical ...
Shock diamonds are the bright areas seen in the exhaust of this statically mounted Pratt & Whitney J58 engine on full afterburner.. Shock diamonds (also known as Mach diamonds or thrust diamonds, and less commonly Mach disks) are a formation of standing wave patterns that appear in the supersonic exhaust plume of an aerospace propulsion system, such as a supersonic jet engine, rocket, ramjet ...
In this case, the gas ahead of the shock is stationary (in the laboratory frame) and the gas behind the shock can be supersonic in the laboratory frame. The shock propagates with a wavefront which is normal (at right angles) to the direction of flow. The speed of the shock is a function of the original pressure ratio between the two bodies of gas.
Decent prediction models are expected to yield similar results in the supersonic flight regime. The five example models down to 1,200 m (1,312 yd) all predict supersonic Mach 1.2 + projectile velocities and total drop differences within a 51 cm (20.1 in) bandwidth. In the transonic flight regime at 1,500 m (1,640 yd) the models predict ...
Supersonic airfoils generally have a thin section formed of either angled planes or opposed arcs (called "double wedge airfoils" and "biconvex airfoils" respectively), with very sharp leading and trailing edges. The sharp edges prevent the formation of a detached bow shock in front of the airfoil as it moves through the air. [1]