Search results
Results from the WOW.Com Content Network
Sequential modules can be written in C, C++, or Fortran; and parallel modules are programmed with a special ASSIST parallel module (parmod). AdHoc, [ 4 ] [ 5 ] a hierarchical and fault-tolerant Distributed Shared Memory (DSM) system is used to interconnect streams of data between processing elements by providing a repository with: get/put ...
YUCCA is a Sequential to Parallel automatic code conversion tool developed by KPIT Technologies Ltd. Pune. It takes input as C source code which may have multiple source and header files. It gives output as transformed multi-threaded parallel code using pthreads functions and OpenMP constructs. The YUCCA tool does task and loop level ...
There are many pleasingly parallel problems that have such relatively independent code blocks, in particular systems using pipes and filters. For example, when producing live broadcast television, the following tasks must be performed many times a second: Read a frame of raw pixel data from the image sensor,
A skilled parallel programmer may take advantage of explicit parallelism to produce efficient code for a given target computation environment. However, programming with explicit parallelism is often difficult, especially for non-computing specialists, because of the extra work and skill involved in developing it.
Concurrent and parallel programming languages involve multiple timelines. Such languages provide synchronization constructs whose behavior is defined by a parallel execution model . A concurrent programming language is defined as one which uses the concept of simultaneously executing processes or threads of execution as a means of structuring a ...
If statement S1 takes T time to execute, then the loop takes time n * T to execute sequentially, ignoring time taken by loop constructs. Now, consider a system with p processors where p > n. If n threads run in parallel, the time to execute all n steps is reduced to T. Less simple cases produce inconsistent, i.e. non-serializable outcomes.
Systolic arrays (< wavefront processors), first described by H. T. Kung and Charles E. Leiserson are an example of MISD architecture. In a typical systolic array, parallel input data flows through a network of hard-wired processor nodes, resembling the human brain which combine, process, merge or sort the input data into a derived result.
As a simple example, if a system is running code on a 2-processor system (CPUs "a" & "b") in a parallel environment and we wish to do tasks "A" and "B", it is possible to tell CPU "a" to do task "A" and CPU "b" to do task "B" simultaneously, thereby reducing the run time of the execution.