Search results
Results from the WOW.Com Content Network
A differential equation of motion, usually identified as some physical law (for example, F = ma), and applying definitions of physical quantities, is used to set up an equation to solve a kinematics problem. Solving the differential equation will lead to a general solution with arbitrary constants, the arbitrariness corresponding to a set of ...
A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.
In projectile motion, the horizontal motion and the vertical motion are independent of each other; that is, neither motion affects the other. This is the principle of compound motion established by Galileo in 1638, [1] and used by him to prove the parabolic form of projectile motion. [2]
Galileo recognized that in projectile motion, the Earth's gravity affects vertical but not horizontal motion. [110] However, Galileo's idea of inertia was not exactly the one that would be codified into Newton's first law. Galileo thought that a body moving a long distance inertially would follow the curve of the Earth.
Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments) acting on the rigid body.
In the inertial frame, the differential equation is not always helpful in solving for the motion of a general rotating rigid body, as both I in and ω can change during the motion. One may instead change to a coordinate frame fixed in the rotating body, in which the moment of inertia tensor is constant.
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
In geometry, a motion is an isometry of a metric space. For instance, a plane equipped with the Euclidean distance metric is a metric space in which a mapping associating congruent figures is a motion. [1] More generally, the term motion is a synonym for surjective isometry in metric geometry, [2] including elliptic geometry and hyperbolic ...