Search results
Results from the WOW.Com Content Network
Optical coherence tomogram of a fingertip. It is possible to observe the sweat glands, having "corkscrew appearance" Interferometric reflectometry of biological tissue, especially of the human eye using short-coherence-length light (also referred to as partially-coherent, low-coherence, or broadband, broad-spectrum, or white light) was investigated in parallel by multiple groups worldwide ...
Endoscopic optical coherence tomography, also intravascular optical coherence tomography is a catheter-based imaging application of optical coherence tomography (OCT). [1] It is capable of acquiring high-resolution images from inside a blood vessel using optical fibers and laser technology.
One approach to decreasing the influence of movement on signal detection is to shorten the scanning time. A short scan time prevents too much patient movement during signal acquisition. With the development of Fourier-domain OCT, spectral-domain OCT, and swept source signal acquisition time was greatly improved making OCTA possible. [40]
OCT can be used to capture functional images of blood flow, a technique known as optical coherence tomography angiography (OCT-A). SV-OCT is one method for OCT-A that uses the variance of consecutively acquired images to detect flow at the micron scale. SV-OCT can be used to measure the microvasculature of tissue.
OCT Biomicroscopy is the use of optical coherence tomography (OCT) in place of slit lamp biomicroscopy to examine the transparent axial tissues of the eye. [1] Traditionally, ophthalmic biomicroscopy has been completed with a slit lamp biomicroscope that uses slit beam illumination and an optical microscope to enable stereoscopic, magnified, cross-sectional views of transparent tissues in the ...
The DA-OCT and DA-DOF+ did not show strong CNR at shallower depths compared to On-Axis OCT and On-Axis OCT DOF+ because the needle surface was located too far from the system's focal zone. In all cases, the modes with enhanced depth of focus (DOF+) had a significantly better CNR than the corresponding modes without the tunable lens.
These two images are later used together to create a 3D image. In this way the image can be analysed giving better information about surface characteristics of the retina. [19] Fundus photography in animals: Fundus photography is a useful tool utilised for veterinary research, veterinary ophthalmology, as well as education. [20]
The curvature of the cornea could be determined from comparison of photographs of the rings against standardized images. In the 1980s, photographs of the projected images became hand-digitized and then analysed by computer. Automation of the process soon followed with the image captured by a digital camera and passed directly to a computer. [5]