enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Topology - Wikipedia

    en.wikipedia.org/wiki/Topology

    A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...

  3. Topological space - Wikipedia

    en.wikipedia.org/wiki/Topological_space

    In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance.More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms ...

  4. Glossary of general topology - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_general_topology

    Absolutely closed See H-closed Accessible See . Accumulation point See limit point. Alexandrov topology The topology of a space X is an Alexandrov topology (or is finitely generated) if arbitrary intersections of open sets in X are open, or equivalently, if arbitrary unions of closed sets are closed, or, again equivalently, if the open sets are the upper sets of a poset.

  5. General topology - Wikipedia

    en.wikipedia.org/wiki/General_topology

    In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology , geometric topology , and algebraic topology .

  6. Comparison of topologies - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_topologies

    A topology on a set may be defined as the collection of subsets which are considered to be "open". (An alternative definition is that it is the collection of subsets which are considered "closed". These two ways of defining the topology are essentially equivalent because the complement of an open set is closed and vice versa. In the following ...

  7. Neighbourhood (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Neighbourhood_(mathematics)

    In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space. It is closely related to the concepts of open set and interior . Intuitively speaking, a neighbourhood of a point is a set of points containing that point where one can move some amount in any direction away from ...

  8. Order topology - Wikipedia

    en.wikipedia.org/wiki/Order_topology

    Though the subspace topology of Y = {−1} ∪ {1/n } n∈N in the section above is shown not to be generated by the induced order on Y, it is nonetheless an order topology on Y; indeed, in the subspace topology every point is isolated (i.e., singleton {y} is open in Y for every y in Y), so the subspace topology is the discrete topology on Y (the topology in which every subset of Y is open ...

  9. Subspace topology - Wikipedia

    en.wikipedia.org/wiki/Subspace_topology

    In the following, represents the real numbers with their usual topology. The subspace topology of the natural numbers, as a subspace of , is the discrete topology.; The rational numbers considered as a subspace of do not have the discrete topology ({0} for example is not an open set in because there is no open subset of whose intersection with can result in only the singleton {0}).