Search results
Results from the WOW.Com Content Network
Draw a line joining the centroids. The centroid of the shape must lie on this line . Divide the shape into two other rectangles, as shown in fig 3. Find the centroids of these two rectangles by drawing the diagonals. Draw a line joining the centroids. The centroid of the L-shape must lie on this line .
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object X {\displaystyle X} in n {\displaystyle n} - dimensional space is the intersection of all hyperplanes that divide X {\displaystyle X} into two parts of equal moment about the hyperplane.
Let A'BC be the equilateral triangle having base BC and vertex A' on the negative side of BC and let AB'C and ABC' be similarly constructed equilateral triangles based on the other two sides of triangle ABC. Then the lines AA', BB', CC' are concurrent and the point of concurrence is the 1st isogonal center. Its trilinear coordinates are
The nine-point center of a triangle lies at the midpoint between the circumcenter and the orthocenter. These points are all on the Euler line. A midsegment (or midline) of a triangle is a line segment that joins the midpoints of two sides of the triangle. It is parallel to the third side and has a length equal to one half of that third side.
Let ABC be a plane triangle and let x : y : z be the trilinear coordinates of an arbitrary point in the plane of triangle ABC.. A straight line in the plane of ABC whose equation in trilinear coordinates has the form (,,) + (,,) + (,,) = where the point with trilinear coordinates (,,): (,,): (,,) is a triangle center, is a central line in the plane of ABC relative to ABC.
The triangle DEF is called the pedal triangle of P. [17] The antipedal triangle of P is the triangle formed by the lines through A, B, C perpendicular to PA, PB, PC respectively. Two points P and Q are called counter points if the pedal triangle of P is homothetic to the antipedal triangle of Q and the pedal triangle of Q is homothetic to the ...
In geometry, the Euler line, named after Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər), is a line determined from any triangle that is not equilateral.It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.
[1]: p. 23 From this, every straight line has a linear equation homogeneous in x, y, z. Every equation of the form + + = in real coefficients is a real straight line of finite points unless l : m : n is proportional to a : b : c, the side lengths, in which case we have the locus of points at infinity.