enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperplane - Wikipedia

    en.wikipedia.org/wiki/Hyperplane

    In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...

  3. Arrangement of hyperplanes - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_hyperplanes

    In geometry and combinatorics, an arrangement of hyperplanes is an arrangement of a finite set A of hyperplanes in a linear, affine, or projective space S.Questions about a hyperplane arrangement A generally concern geometrical, topological, or other properties of the complement, M(A), which is the set that remains when the hyperplanes are removed from the whole space.

  4. Hyperplane at infinity - Wikipedia

    en.wikipedia.org/wiki/Hyperplane_at_infinity

    A pair of non-parallel affine hyperplanes intersect at an affine subspace of dimension n − 2, but a parallel pair of affine hyperplanes intersect at a projective subspace of the ideal hyperplane (the intersection lies on the ideal hyperplane). Thus, parallel hyperplanes, which did not meet in the affine space, intersect in the projective ...

  5. Tarski's plank problem - Wikipedia

    en.wikipedia.org/wiki/Tarski's_plank_problem

    The (closed) set of points P between two distinct, parallel hyperplanes in R n is called a plank, and the distance between the two hyperplanes is called the width of the plank, w(P). Tarski conjectured that if a convex body C of minimal width w ( C ) was covered by a collection of planks, then the sum of the widths of those planks must be at ...

  6. Hyperplane separation theorem - Wikipedia

    en.wikipedia.org/wiki/Hyperplane_separation_theorem

    In geometry, the hyperplane separation theorem is a theorem about disjoint convex sets in n-dimensional Euclidean space.There are several rather similar versions. In one version of the theorem, if both these sets are closed and at least one of them is compact, then there is a hyperplane in between them and even two parallel hyperplanes in between them separated by a gap.

  7. Hyperplane section - Wikipedia

    en.wikipedia.org/wiki/Hyperplane_section

    In mathematics, a hyperplane section of a subset X of projective space P n is the intersection of X with some hyperplane H.In other words, we look at the subset X H of those elements x of X that satisfy the single linear condition L = 0 defining H as a linear subspace.

  8. Supporting hyperplane - Wikipedia

    en.wikipedia.org/wiki/Supporting_hyperplane

    [2] Conversely, if is a closed set with nonempty interior such that every point on the boundary has a supporting hyperplane, then is a convex set, and is the intersection of all its supporting closed half-spaces. [2] The hyperplane in the theorem may not be unique, as noticed in the second picture on the right.

  9. Linear separability - Wikipedia

    en.wikipedia.org/wiki/Linear_separability

    There are many hyperplanes that might classify (separate) the data. One reasonable choice as the best hyperplane is the one that represents the largest separation, or margin, between the two sets. So we choose the hyperplane so that the distance from it to the nearest data point on each side is maximized.