Search results
Results from the WOW.Com Content Network
For example, Paraffin has very large molecules and thus a high heat capacity per mole, but as a substance it does not have remarkable heat capacity in terms of volume, mass, or atom-mol (which is just 1.41 R per mole of atoms, or less than half of most solids, in terms of heat capacity per atom).
Because titanium is resistant to corrosion by sea water, it is used to make propeller shafts, rigging, heat exchangers in desalination plants, [12] heater-chillers for salt water aquariums, fishing line and leader, and divers' knives. Titanium is used in the housings and components of ocean-deployed surveillance and monitoring devices for ...
Titanium, zirconium, and hafnium are reactive metals, but this is masked in the bulk form because they form a dense oxide layer that sticks to the metal and reforms even if removed. As such, the bulk metals are very resistant to chemical attack; most aqueous acids have no effect unless heated, and aqueous alkalis have no effect even when hot.
750-1100 °C operating temperatures at oxidation in air + 10% water vapor, depending upon Ni wt.% AFA superalloy (40-50)Fe-(30-35)Ni-(14-19)Cr-(2.5-3.5)Al-3Nb 750-850 °C operating temperatures at oxidation in air + 10% water vapor; Operating temperatures with oxidation in air and no water vapor are expected to be higher.
Molybdenum-based alloys are widely used, because they are cheaper than superior tungsten alloys. The most widely used alloy of molybdenum is the Titanium-Zirconium-Molybdenum alloy TZM, composed of 0.5% titanium and 0.08% of zirconium (with molybdenum being the rest). The alloy exhibits a higher creep resistance and strength at high ...
For clarity, he then described a hypothetical, but realistic variant of the experiment: If equal masses of 100 °F water and 150 °F mercury are mixed, the water temperature increases by 20 ° and the mercury temperature decreases by 30 ° (both arriving at 120 °F), even though the heat gained by the water and lost by the mercury is the same.
Titanium alone is a strong, light metal. It is stronger than common, low-carbon steels, but 45% lighter. It is also twice as strong as weak aluminium alloys but only 60% heavier. Titanium has outstanding corrosion resistance to seawater, and thus is used in propeller shafts, rigging and other parts of boats that are exposed to seawater.
The most reactive metals, such as sodium, will react with cold water to produce hydrogen and the metal hydroxide: . 2 Na (s) + 2 H 2 O (l) →2 NaOH (aq) + H 2 (g). Metals in the middle of the reactivity series, such as iron, will react with acids such as sulfuric acid (but not water at normal temperatures) to give hydrogen and a metal salt, such as iron(II) sulfate: