enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Antisymmetric relation - Wikipedia

    en.wikipedia.org/wiki/Antisymmetric_relation

    A relation can be both symmetric and antisymmetric (in this case, it must be coreflexive), and there are relations which are neither symmetric nor antisymmetric (for example, the "preys on" relation on biological species). Antisymmetry is different from asymmetry: a relation is asymmetric if and only if it is antisymmetric and irreflexive.

  3. Asymmetric relation - Wikipedia

    en.wikipedia.org/wiki/Asymmetric_relation

    For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...

  4. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    Antisymmetric for all x, y ∈ X, if xRy and yRx then x = y. For example, ≥ is an antisymmetric relation; so is >, but vacuously (the condition in the definition is always false). [11] Asymmetric for all x, y ∈ X, if xRy then not yRx. A relation is asymmetric if and only if it is both antisymmetric and irreflexive. [12]

  5. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    Formally, a partial order is a homogeneous binary relation that is reflexive, antisymmetric, and transitive. A partially ordered set ( poset for short) is an ordered pair P = ( X , ≤ ) {\displaystyle P=(X,\leq )} consisting of a set X {\displaystyle X} (called the ground set of P {\displaystyle P} ) and a partial order ≤ {\displaystyle \leq ...

  6. Total order - Wikipedia

    en.wikipedia.org/wiki/Total_order

    A binary relation that is antisymmetric, transitive, and reflexive (but not necessarily total) is a partial order. A group with a compatible total order is a totally ordered group. There are only a few nontrivial structures that are (interdefinable as) reducts of a total order. Forgetting the orientation results in a betweenness relation.

  7. Binary relation - Wikipedia

    en.wikipedia.org/wiki/Binary_relation

    In order to specify the choices of the sets and , some authors define a binary relation or correspondence as an ordered triple (,,), where is a subset of called the graph of the binary relation. The statement ( x , y ) ∈ R {\displaystyle (x,y)\in R} reads " x {\displaystyle x} is R {\displaystyle R} -related to y {\displaystyle y} " and is ...

  8. Equivalence relation - Wikipedia

    en.wikipedia.org/wiki/Equivalence_relation

    The intersection of any collection of equivalence relations over X (binary relations viewed as a subset of ) is also an equivalence relation. This yields a convenient way of generating an equivalence relation: given any binary relation R on X , the equivalence relation generated by R is the intersection of all equivalence relations containing R ...

  9. Bilinear form - Wikipedia

    en.wikipedia.org/wiki/Bilinear_form

    When char(K) ≠ 2, the quadratic form Q is determined by the symmetric part of the bilinear form B and is independent of the antisymmetric part. In this case there is a one-to-one correspondence between the symmetric part of the bilinear form and the quadratic form, and it makes sense to speak of the symmetric bilinear form associated with a ...