enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vortex - Wikipedia

    en.wikipedia.org/wiki/Vortex

    In an irrotational vortex flow with constant fluid density and cylindrical symmetry, the dynamic pressure varies as P ∞ − ⁠ K / r 2 ⁠, where P ∞ is the limiting pressure infinitely far from the axis. This formula provides another constraint for the extent of the core, since the pressure cannot be negative.

  3. Two-dimensional flow - Wikipedia

    en.wikipedia.org/wiki/Two-dimensional_flow

    A vortex is a region where the fluid flows around an imaginary axis. For an irrotational vortex, the flow at every point is such that a small particle placed there undergoes pure translation and does not rotate. Velocity varies inversely with radius in this case.

  4. Conservative vector field - Wikipedia

    en.wikipedia.org/wiki/Conservative_vector_field

    The vorticity of an irrotational field is zero everywhere. [6] Kelvin's circulation theorem states that a fluid that is irrotational in an inviscid flow will remain irrotational. This result can be derived from the vorticity transport equation, obtained by taking the curl of the Navier–Stokes equations.

  5. Vorticity - Wikipedia

    en.wikipedia.org/wiki/Vorticity

    Rigid-body-like vortex v ∝ r: Parallel flow with shear Irrotational vortex v ∝ ⁠ 1 / r ⁠ where v is the velocity of the flow, r is the distance to the center of the vortex and ∝ indicates proportionality. Absolute velocities around the highlighted point: Relative velocities (magnified) around the highlighted point Vorticity ≠ 0 ...

  6. Helmholtz's theorems - Wikipedia

    en.wikipedia.org/wiki/Helmholtz's_theorems

    The strength of a vortex line is constant along its length. Helmholtz's second theorem A vortex line cannot end in a fluid; it must extend to the boundaries of the fluid or form a closed path. Helmholtz's third theorem A fluid element that is initially irrotational remains irrotational. Helmholtz's theorems apply to inviscid flows.

  7. Potential flow - Wikipedia

    en.wikipedia.org/wiki/Potential_flow

    In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity , i.e., for an inviscid fluid and with no vorticity present in the flow.

  8. Access AOL Mail on mobile devices

    help.aol.com/articles/aol-mail-mobile-mail

    The AOL App gives you access to all the best of AOL, including Mail's innovative features and settings. With the app version of AOL Mail, you'll be able to add accounts, send mail, organize your mailbox, and more on either Android or iOS.

  9. Rankine vortex - Wikipedia

    en.wikipedia.org/wiki/Rankine_vortex

    The Rankine vortex is a simple mathematical model of a vortex in a viscous fluid. It is named after its discoverer, William John Macquorn Rankine. The vortices observed in nature are usually modelled with an irrotational (potential or free) vortex. However, in a potential vortex, the velocity becomes infinite at the vortex center.