enow.com Web Search

  1. Ad

    related to: propeller efficiency equation ratio example worksheet

Search results

  1. Results from the WOW.Com Content Network
  2. Advance ratio - Wikipedia

    en.wikipedia.org/wiki/Advance_ratio

    The advance ratio is critical for determining the efficiency of a propeller. At different advance ratios, the propeller may produce more or less thrust. Engineers use this ratio to optimize the design of the propeller and the engine, ensuring that the vehicle operates efficiently at its intended cruising speed, see propeller theory .

  3. Propeller theory - Wikipedia

    en.wikipedia.org/wiki/Propeller_theory

    When a propeller is added to a ship its performance is altered; there is the mechanical losses in the transmission of power; a general increase in total resistance; and the hull also impedes and renders non-uniform the flow through the propeller. The ratio between a propeller's efficiency attached to a ship and in open water (′) is termed ...

  4. Propulsive efficiency - Wikipedia

    en.wikipedia.org/wiki/Propulsive_efficiency

    Propulsive efficiency comparison for various gas turbine engine configurations. The calculation is somewhat different for reciprocating and turboprop engines which rely on a propeller for propulsion since their output is typically expressed in terms of power rather than thrust. The equation for heat added per unit time, Q, can be adopted as ...

  5. Drag curve - Wikipedia

    en.wikipedia.org/wiki/Drag_curve

    P R curve for the light aircraft with the drag curve above and weighing 2000 kg, with a wing area of 15 m² and a propeller efficiency of 0.8. W = (ρ/2).S.V 2.C L and P R = (ρ/2η).S.V 3.C D. The extra factor of V /η, with η the propeller efficiency, in the second equation enters because P R = (required thrust)× V /η. Power rather than ...

  6. Propellant mass fraction - Wikipedia

    en.wikipedia.org/wiki/Propellant_mass_fraction

    The propellant mass fraction is the ratio of just the propellant to the entire mass of the vehicle at takeoff (propellant plus dry mass). In the cases of a single-stage-to-orbit (SSTO) vehicle or suborbital vehicle, the mass fraction equals the propellant mass fraction, which is simply the fuel mass divided by the mass of the full spaceship.

  7. Disk loading - Wikipedia

    en.wikipedia.org/wiki/Disk_loading

    In reciprocating and propeller engines, disk loading can be defined as the ratio between propeller-induced velocity and freestream velocity. [citation needed] Lower disk loading will increase efficiency, so it is generally desirable to have larger propellers from an efficiency standpoint.

  8. Thrust-to-weight ratio - Wikipedia

    en.wikipedia.org/wiki/Thrust-to-weight_ratio

    where is propulsive efficiency (typically 0.65 for wooden propellers, 0.75 metal fixed pitch and up to 0.85 for constant-speed propellers), hp is the engine's shaft horsepower, and is true airspeed in feet per second, weight is in lbs. The metric formula is:

  9. Euler's pump and turbine equation - Wikipedia

    en.wikipedia.org/wiki/Euler's_pump_and_turbine...

    With the help of these equations the head developed by a pump and the head utilised by a turbine can be easily determined. As the name suggests these equations were formulated by Leonhard Euler in the eighteenth century. [1] These equations can be derived from the moment of momentum equation when applied for a pump or a turbine.

  1. Ad

    related to: propeller efficiency equation ratio example worksheet