Search results
Results from the WOW.Com Content Network
A fission fragment reactor is a nuclear reactor that generates electricity by decelerating an ion beam of fission byproducts instead of using nuclear reactions to generate heat. By doing so, it bypasses the Carnot cycle and can achieve efficiencies of up to 90% instead of 40–45% attainable by efficient turbine-driven thermal reactors.
The very-high-temperature reactor (VHTR) uses a graphite-moderated core with a once-through uranium fuel cycle, using helium or molten salt. This reactor design envisions an outlet temperature of 1,000°C. The reactor core can be either a prismatic-block or a pebble bed reactor design.
Wikipedia: Featured picture candidates/Diagram of the Operation of a Nuclear Reactor in a Standard Nuclear Power Plant
Modern nuclear reactor designs have had numerous safety improvements since the first-generation nuclear reactors. A nuclear power plant cannot explode like a nuclear weapon because the fuel for uranium reactors is not enriched enough, and nuclear weapons require precision explosives to force fuel into a small enough volume to become supercritical.
A boiling water reactor (BWR) is a type of nuclear reactor used for the generation of electrical power. It is the second most common type of electricity-generating nuclear reactor after the pressurized water reactor (PWR). BWR are thermal neutron reactors, where water is thus used both as a coolant and as a moderator, slowing down neutrons.
The AOL.com video experience serves up the best video content from AOL and around the web, curating informative and entertaining snackable videos.
Apsara reactor – Asia's first nuclear reactor. 1 MW, pool type, light water moderated, enriched uranium fuel supplied by France; CIRUS reactor – 40 MW, supplied by Canada, heavy water moderated, uses natural uranium fuel; Dhruva reactor – 100 MW, heavy water moderated, uses natural uranium fuel; Purnima series
A Development of the RBMK nuclear power reactor. Fixes all of the RBMK reactor's design errors and flaws and adds a full containment building and Passive nuclear safety features such as a passive core cooling system. The physical prototype of the MKER-1000 is the 5th unit of the Kursk Nuclear Power Plant