enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    The convolution of and is written , denoting the operator with the symbol . [B] It is defined as the integral of the product of the two functions after one is reflected about the y-axis and shifted.

  3. Distribution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Distribution_(mathematics)

    In general, the transpose of a continuous linear map : is the linear map : ′ ′ (′):= ′, or equivalently, it is the unique map satisfying ′, = (′), for all and all ′ ′ (the prime symbol in ′ does not denote a derivative of any kind; it merely indicates that ′ is an element of the continuous dual space ′).

  4. Multidimensional discrete convolution - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_discrete...

    Convolution in one dimension was a powerful discovery that allowed the input and output of a linear shift-invariant (LSI) system (see LTI system theory) to be easily compared so long as the impulse response of the filter system was known. This notion carries over to multidimensional convolution as well, as simply knowing the impulse response of ...

  5. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  6. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain).

  7. Sequence transformation - Wikipedia

    en.wikipedia.org/wiki/Sequence_transformation

    Sequence transformations include linear mappings such as discrete convolution with another sequence and resummation of a sequence and nonlinear mappings, more generally. They are commonly used for series acceleration , that is, for improving the rate of convergence of a slowly convergent sequence or series .

  8. Convex cone - Wikipedia

    en.wikipedia.org/wiki/Convex_cone

    A subset of a vector space over an ordered field is a cone (or sometimes called a linear cone) if for each in and positive scalar in , the product is in . [2] Note that some authors define cone with the scalar ranging over all non-negative scalars (rather than all positive scalars, which does not include 0). [3]

  9. Line integral convolution - Wikipedia

    en.wikipedia.org/wiki/Line_integral_convolution

    In scientific visualization, line integral convolution (LIC) is a method to visualize a vector field (such as fluid motion) at high spatial resolutions. [1] The LIC technique was first proposed by Brian Cabral and Leith Casey Leedom in 1993.