Search results
Results from the WOW.Com Content Network
In mathematics, a variable (from Latin variabilis, "changeable") is a symbol, typically a letter, that refers to an unspecified mathematical object. [1] [2] [3] One says colloquially that the variable represents or denotes the object, and that any valid candidate for the object is the value of the variable.
Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...
In mathematics, a function is a rule for taking an input (in the simplest case, a number or set of numbers) [5] and providing an output (which may also be a number). [5] A symbol that stands for an arbitrary input is called an independent variable, while a symbol that stands for an arbitrary output is called a dependent variable. [6]
Random variables are usually written in upper case Roman letters, such as or and so on. Random variables, in this context, usually refer to something in words, such as "the height of a subject" for a continuous variable, or "the number of cars in the school car park" for a discrete variable, or "the colour of the next bicycle" for a categorical variable.
The term Variable is relevant to several contexts, and is especially important to mathematics and computer science. Scientists and engineers will often use mathematical variables in formulae and equations, such as E = m c 2; they will also have their own special uses of the term. The term Variable can also occur in other contexts, such as ...
Mathematical statistics is the application of mathematics to statistics. Mathematical techniques used for this include mathematical analysis, linear algebra, stochastic analysis, differential equations, and measure-theoretic probability theory.
In mathematics and statistics, a quantitative variable may be continuous or discrete if it is typically obtained by measuring or counting, respectively. [1] If it can take on two particular real values such that it can also take on all real values between them (including values that are arbitrarily or infinitesimally close together), the variable is continuous in that interval. [2]
A mean is a quantity representing the "center" of a collection of numbers and is intermediate to the extreme values of the set of numbers. [1] There are several kinds of means (or "measures of central tendency") in mathematics, especially in statistics.