enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vulcain (rocket engine) - Wikipedia

    en.wikipedia.org/wiki/Vulcain_(rocket_engine)

    Vulcain is a family of European first stage rocket engines for Ariane 5 and Ariane 6. Its development began in 1988 and the first flight was completed in 1996. The updated version of the engine, Vulcain 2, was first successfully flown in 2005. Both members of the family use liquid oxygen/liquid hydrogen cryogenic fuel.

  3. LE-9 - Wikipedia

    en.wikipedia.org/wiki/LE-9

    The LE-9 is a liquid cryogenic rocket engine burning liquid hydrogen and liquid oxygen in an expander bleed cycle. Two or three will be used to power the core stage of the H3 launch vehicle. [1] [2] [5] The newly developed LE-9 engine is the most important factor in achieving cost reduction, improved safety and increased thrust.

  4. RL10 - Wikipedia

    en.wikipedia.org/wiki/RL10

    The RL10 is a liquid-fuel cryogenic rocket engine built in the United States by Aerojet Rocketdyne that burns cryogenic liquid hydrogen and liquid oxygen propellants. Modern versions produce up to 110 kN (24,729 lb f) of thrust per engine in vacuum. RL10 versions were produced for the Centaur upper stage of the Atlas V and the DCSS of the Delta IV

  5. Regenerative cooling (rocketry) - Wikipedia

    en.wikipedia.org/wiki/Regenerative_cooling...

    Regenerative cooling remains the predominant method for managing the thermal loads in thrust chambers. Typically the rocket fuel acts as a coolant as it enters the engine through passages at the nozzle exit. [5] It traverses the high-heat throat region and exits near the injector face.

  6. Orbital propellant depot - Wikipedia

    en.wikipedia.org/wiki/Orbital_propellant_depot

    For rockets and space vehicles, propellants usually take up 2/3 or more of their total mass. Large upper-stage rocket engines generally use a cryogenic fuel like liquid hydrogen and liquid oxygen (LOX) as an oxidizer because of the large specific impulse possible, but must carefully consider a problem called "boil off," or the evaporation of the cryogenic propellant.

  7. RS-68 - Wikipedia

    en.wikipedia.org/wiki/RS-68

    The RS-68 (Rocket System-68) was a liquid-fuel rocket engine that used liquid hydrogen (LH 2) and liquid oxygen (LOX) as propellants in a gas-generator cycle. It was the largest hydrogen-fueled rocket engine ever flown. [3] Designed and manufactured in the United States by Rocketdyne (later Pratt & Whitney Rocketdyne and Aerojet Rocketdyne).

  8. Cryogenic rocket engine - Wikipedia

    en.wikipedia.org/wiki/Cryogenic_rocket_engine

    These cryogenic temperatures vary depending on the propellant, with liquid oxygen existing below −183 °C (−297.4 °F; 90.1 K) and liquid hydrogen below −253 °C (−423.4 °F; 20.1 K). Since one or more of the propellants is in the liquid phase, all cryogenic rocket engines are by definition liquid-propellant rocket engines. [2]

  9. J-2X - Wikipedia

    en.wikipedia.org/wiki/J-2X

    The J-2X is a liquid-fueled cryogenic rocket engine that was planned for use on the Ares rockets of NASA's Constellation program, and later the Space Launch System.Built in the United States by Aerojet Rocketdyne (formerly, Pratt & Whitney Rocketdyne), the J-2X burns cryogenic liquid hydrogen and liquid oxygen propellants, with each engine producing 1,307 kN (294,000 lb f) of thrust in vacuum ...