enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning

    Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...

  3. Probably approximately correct learning - Wikipedia

    en.wikipedia.org/wiki/Probably_approximately...

    For the following definitions, two examples will be used. The first is the problem of character recognition given an array of n {\displaystyle n} bits encoding a binary-valued image. The other example is the problem of finding an interval that will correctly classify points within the interval as positive and the points outside of the range as ...

  4. Rescorla–Wagner model - Wikipedia

    en.wikipedia.org/wiki/Rescorla–Wagner_model

    Van Hamme and Wasserman have extended the original Rescorla–Wagner (RW) model and introduced a new factor in their revised RW model in 1994: [3] They suggested that not only conditioned stimuli physically present on a given trial can undergo changes in their associative strength, the associative value of a CS can also be altered by a within-compound-association with a CS present on that trial.

  5. File:Reinforcement learning diagram.svg - Wikipedia

    en.wikipedia.org/wiki/File:Reinforcement...

    English: Diagram showing the components in a typical Reinforcement Learning (RL) system. An agent takes actions in an environment which is interpreted into a reward and a representation of the state which is fed back into the agent.

  6. Reinforcement learning from human feedback - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning...

    When learning from human feedback through pairwise comparison under the Bradley–Terry–Luce model (or the Plackett–Luce model for K-wise comparisons over more than two comparisons), the maximum likelihood estimator (MLE) for linear reward functions has been shown to converge if the comparison data is generated under a well-specified linear ...

  7. Markov decision process - Wikipedia

    en.wikipedia.org/wiki/Markov_decision_process

    For example, the dynamic programming algorithms described in the next section require an explicit model, and Monte Carlo tree search requires a generative model (or an episodic simulator that can be copied at any state), whereas most reinforcement learning algorithms require only an episodic simulator.

  8. Q-learning - Wikipedia

    en.wikipedia.org/wiki/Q-learning

    Q-learning is a model-free reinforcement learning algorithm that teaches an agent to assign values to each action it might take, conditioned on the agent being in a particular state. It does not require a model of the environment (hence "model-free"), and it can handle problems with stochastic transitions and rewards without requiring adaptations.

  9. Model-free (reinforcement learning) - Wikipedia

    en.wikipedia.org/wiki/Model-free_(reinforcement...

    In reinforcement learning (RL), a model-free algorithm is an algorithm which does not estimate the transition probability distribution (and the reward function) associated with the Markov decision process (MDP), [1] which, in RL, represents the problem to be solved. The transition probability distribution (or transition model) and the reward ...