Search results
Results from the WOW.Com Content Network
In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. [1] For example, the electron configuration of the neon atom is 1s 2 2s 2 2p 6 , meaning that the 1s, 2s, and 2p subshells are occupied by two, two, and six ...
This page shows the electron configurations of the neutral gaseous atoms in their ground states. For each atom the subshells are given first in concise form, then with all subshells written out, followed by the number of electrons per shell. For phosphorus (element 15) as an example, the concise form is [Ne] 3s 2 3p 3.
Note that these electron configurations are given for neutral atoms in the gas phase, which are not the same as the electron configurations for the same atoms in chemical environments. In many cases, multiple configurations are within a small range of energies and the small irregularities that arise in the d- and f-blocks are quite irrelevant ...
The quantum theory of the atom explains the eight electrons as a closed shell with an s 2 p 6 electron configuration. A closed-shell configuration is one in which low-lying energy levels are full and higher energy levels are empty. For example, the neon atom ground state has a full n = 2 shell (2s 2 2p 6) and an empty n = 3 shell. According to ...
In this way, the electrons of an atom or ion form the most stable electron configuration possible. An example is the configuration 1s 2 2s 2 2p 6 3s 2 3p 3 for the phosphorus atom, meaning that the 1s subshell has 2 electrons, the 2s subshell has 2 electrons, the 2p subshell has 6 electrons, and so on.
In chemistry and atomic physics, an electron shell may be thought of as an orbit that electrons follow around an atom's nucleus.The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or "L shell"), then the "3 shell" (or "M shell"), and so on further and further from the nucleus.
Such an atom has the following electron configuration: s 2 p 5; this requires only one additional valence electron to form a closed shell. To form an ionic bond, a halogen atom can remove an electron from another atom in order to form an anion (e.g., F −, Cl −, etc.). To form a covalent bond, one electron from the halogen and one electron ...
The constituent particles of an atom are the electron, the proton and the neutron. The electron is the least massive of these particles by four orders of magnitude at 9.11 × 10 −31 kg, with a negative electrical charge and a size that is too small to be measured using available techniques. [36]