Search results
Results from the WOW.Com Content Network
In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number n is denoted n 3, using a superscript 3, [a] for example 2 3 = 8. The cube operation can also be defined for any other mathematical expression, for example (x + 1) 3.
In mathematics, a trinomial expansion is the expansion of a power of a sum of three terms into monomials. The expansion is given by The expansion is given by ( a + b + c ) n = ∑ i , j , k i + j + k = n ( n i , j , k ) a i b j c k , {\displaystyle (a+b+c)^{n}=\sum _{{i,j,k} \atop {i+j+k=n}}{n \choose i,j,k}\,a^{i}\,b^{\;\!j}\;\!c^{k},}
Jason X: To the Third Power is a 2006 British science fiction horror novel written by Nancy Kilpatrick and published by Black Flame. [1] [2] [3] A tie-in to the Friday the 13th series of American horror films, it is the fifth and final installment in a series of five Jason X novels published by Black Flame and revolves around a group of scientists fighting for their lives against escaped ...
In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.
In mathematics, a cube root of a number x is a number y that has the given number as its third power; that is =. The number of cube roots of a number depends on the number system that is considered. Every nonzero real number x has exactly one real cube root that is denoted x 3 {\textstyle {\sqrt[{3}]{x}}} and called the real cube root of x or ...
[1] Every positive integer can be expressed as the sum of at most 19 fourth powers; every integer larger than 13792 can be expressed as the sum of at most 16 fourth powers (see Waring's problem). Fermat knew that a fourth power cannot be the sum of two other fourth powers (the n = 4 case of Fermat's Last Theorem; see Fermat's right triangle ...
If exponentiation is considered as a multivalued function then the possible values of (−1 ⋅ −1) 1/2 are {1, −1}. The identity holds, but saying {1} = {(−1 ⋅ −1) 1/2 } is incorrect. The identity ( e x ) y = e xy holds for real numbers x and y , but assuming its truth for complex numbers leads to the following paradox , discovered ...
Lucas numbers have L 1 = 1, L 2 = 3, and L n = L n−1 + L n−2. Primefree sequences use the Fibonacci recursion with other starting points to generate sequences in which all numbers are composite. Letting a number be a linear function (other than the sum) of the 2 preceding numbers. The Pell numbers have P n = 2P n−1 + P n−2.