Search results
Results from the WOW.Com Content Network
The phases of SEMMA and related tasks are the following: [2] Sample. The process starts with data sampling, e.g., selecting the data set for modeling. The data set should be large enough to contain sufficient information to retrieve, yet small enough to be used efficiently. This phase also deals with data partitioning. Explore.
The outer circle in the diagram symbolizes the cyclic nature of data mining itself. A data mining process continues after a solution has been deployed. The lessons learned during the process can trigger new, often more focused business questions, and subsequent data mining processes will benefit from the experiences of previous ones.
Business process discovery (BPD) related to business process management and process mining is a set of techniques that manually or automatically construct a representation of an organisations' current business processes and their major process variations. These techniques use data recorded in the existing organisational methods of work ...
The refined representation of a process can be done in another data-flow diagram, which subdivides this process into sub-processes. The data-flow diagram is a tool that is part of structured analysis and data modeling. When using UML, the activity diagram typically takes over the role of the data-flow diagram. A special form of data-flow plan ...
The purpose of this step is to measure the specification of problem/goal. This is a data collection step, the purpose of which is to establish process performance baselines. The performance metric baseline(s) from the Measure phase will be compared to the performance metric at the conclusion of the project to determine objectively whether ...
Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...
Data science process flowchart from Doing Data Science, by Schutt & O'Neil (2013) Analysis refers to dividing a whole into its separate components for individual examination. [10] Data analysis is a process for obtaining raw data, and subsequently converting it into information useful for decision-making by users. [1]
There have been some efforts to define standards for the data mining process, for example, the 1999 European Cross Industry Standard Process for Data Mining (CRISP-DM 1.0) and the 2004 Java Data Mining standard (JDM 1.0). Development on successors to these processes (CRISP-DM 2.0 and JDM 2.0) was active in 2006 but has stalled since.