enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    The physical entropy may be on a "per quantity" basis (h) which is called "intensive" entropy instead of the usual total entropy which is called "extensive" entropy. The "shannons" of a message (Η) are its total "extensive" information entropy and is h times the number of bits in the message.

  3. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    In this form the relative entropy generalizes (up to change in sign) both the discrete entropy, where the measure m is the counting measure, and the differential entropy, where the measure m is the Lebesgue measure. If the measure m is itself a probability distribution, the relative entropy is non-negative, and zero if p = m as measures.

  4. Hess's law - Wikipedia

    en.wikipedia.org/wiki/Hess's_law

    For entropy, the situation is a little different. Because entropy can be measured as an absolute value, not relative to those of the elements in their reference states (as with ΔH o and ΔG o), there is no need to use the entropy of formation; one simply uses the absolute entropies for products and reactants:

  5. H-theorem - Wikipedia

    en.wikipedia.org/wiki/H-theorem

    As this quantity H was meant to represent the entropy of thermodynamics, the H-theorem was an early demonstration of the power of statistical mechanics as it claimed to derive the second law of thermodynamics—a statement about fundamentally irreversible processes—from reversible microscopic mechanics.

  6. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    Thus, they are essentially equations of state, and using the fundamental equations, experimental data can be used to determine sought-after quantities like G (Gibbs free energy) or H . [1] The relation is generally expressed as a microscopic change in internal energy in terms of microscopic changes in entropy , and volume for a closed system in ...

  7. Entropy (statistical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(statistical...

    Entropy changes for systems in a canonical state A system with a well-defined temperature, i.e., one in thermal equilibrium with a thermal reservoir, has a probability of being in a microstate i given by Boltzmann's distribution .

  8. Entropy (order and disorder) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(order_and_disorder)

    In a stretched out piece of rubber, for example, the arrangement of the molecules of its structure has an "ordered" distribution and has zero entropy, while the "disordered" kinky distribution of the atoms and molecules in the rubber in the non-stretched state has positive entropy. Similarly, in a gas, the order is perfect and the measure of ...

  9. Entropy as an arrow of time - Wikipedia

    en.wikipedia.org/wiki/Entropy_as_an_arrow_of_time

    Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from ...