Search results
Results from the WOW.Com Content Network
A sequence of idempotent subroutines where at least one subroutine is different from the others, however, is not necessarily idempotent if a later subroutine in the sequence changes a value that an earlier subroutine depends on—idempotence is not closed under sequential composition. For example, suppose the initial value of a variable is 3 ...
setx is idempotent because the second application of setx to 3 has the same effect on the system state as the first application: x was already set to 3 after the first application, and it is still set to 3 after the second application. A pure function is idempotent if it is idempotent in the mathematical sense. For instance, consider the ...
The compare function is included to illustrate a partial order on the states. The merge function is commutative, associative, and idempotent. The update function monotonically increases the internal state according to the compare function. This is thus a correctly defined state-based CRDT and will provide strong eventual consistency.
In mathematics, an idempotent binary relation is a binary relation R on a set X (a subset of Cartesian product X × X) for which the composition of relations R ∘ R is the same as R. [ 1 ] [ 2 ] This notion generalizes that of an idempotent function to relations.
The summation of idempotent endomorphisms corresponds to the decomposition of the unity of R: =, which is necessarily a finite sum; in particular, must be a finite set. For example, take R = M n ( D ) {\displaystyle R=\operatorname {M} _{n}(D)} , the ring of n -by- n matrices over a division ring D .
An idempotent e: A → A is said to split if there is an object B and morphisms f: A → B, g : B → A such that e = g f and 1 B = f g. The Karoubi envelope of C , sometimes written Split(C) , is the category whose objects are pairs of the form ( A , e ) where A is an object of C and e : A → A {\displaystyle e:A\rightarrow A} is an ...
Both conjunction and disjunction are associative, commutative and idempotent in classical logic, most varieties of many-valued logic and intuitionistic logic. The same is true about distributivity of conjunction over disjunction and disjunction over conjunction, as well as for the absorption law.
every element x of GF(2) satisfies x 2 = x (i.e. is idempotent with respect to multiplication); this is an instance of Fermat's little theorem. GF(2) is the only field with this property (Proof: if x 2 = x, then either x = 0 or x ≠ 0. In the latter case, x must have a multiplicative inverse, in which case dividing both sides by x gives x = 1 ...