Search results
Results from the WOW.Com Content Network
These fibres decussate (cross) to the contralateral (opposite) side, so called the sensory decussation. The ascending bundle after the decussation is called the medial lemniscus. Unlike other ascending tracts of the brain, fibres of the medial lemniscus do not give off collateral branches as they travel along the brainstem. [1]
In botanical leaf taxology, the word decussate describes an opposite pattern of leaves which has successive pairs at right angles to each other (i.e. rotated 90 degrees along the stem when viewed from above). In effect, successive pairs of leaves cross each other. Basil is a classic example of a decussate leaf pattern.
They each have an anterolateral sulcus along their lateral borders, where the hypoglossal nerve emerges from. Also at the side of each pyramid there is a pronounced bulge known as an olive. Fibers of the posterior column, which transmit sensory and proprioceptive information, are located behind the pyramids on the medulla oblongata.
The axons of the upper motor neurons project out of the precentral gyrus travelling through to the brainstem, where they will decussate (intersect) within the lower medulla oblongata to form the lateral corticospinal tract on each side of the spinal cord. The fibers that do not decussate will pass through the medulla and continue on to form the ...
reticulospinal tract: connects the reticular system, a diffuse region of gray matter in the brain stem, to the spinal cord. It also contributes to muscle tone and influences autonomic functions. lateral vestibulospinal tract: Connects the brain stem nuclei of the vestibular system with the spinal cord. This allows posture, movement, and balance ...
The development of the nervous system in humans, or neural development, or neurodevelopment involves the studies of embryology, developmental biology, and neuroscience.These describe the cellular and molecular mechanisms by which the complex nervous system forms in humans, develops during prenatal development, and continues to develop postnatally.
His brain was able to adapt to the change and perceive the world as normal. Also, the field can be altered making the subject see the world upside down. But, as the brain adjusts to the change, the world appears "normal." [8] [9] In some extreme experiments, psychologists have tested to see if a pilot can fly a plane with altered vision.
In fear conditioning, the main circuits that are involved are the sensory areas that process the conditioned and unconditioned stimuli, certain regions of the amygdala that undergo plasticity (or long-term potentiation) during learning, and the regions that bear an effect on the expression of specific conditioned responses.