Search results
Results from the WOW.Com Content Network
The solution set for the equations x − y = −1 and 3x + y = 9 is the single point (2, 3). A solution of a linear system is an assignment of values to the variables ,, …, such that each of the equations is satisfied. The set of all possible solutions is called the solution set. [5]
The graph of the zero polynomial, f(x) = 0, ... For example, x 3 y 2 + 7x 2 y 3 − 3x 5 is homogeneous of degree 5. For more details, see Homogeneous polynomial.
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
[3] [4] Points where concavity changes (between concave and convex) are inflection points. [5] If f is twice-differentiable, then f is concave if and only if f ′′ is non-positive (or, informally, if the "acceleration" is non-positive). If f ′′ is negative then f is strictly concave, but the converse is not true, as shown by f(x) = −x 4.
One particular solution is x = 0, y = 0, z = 0. Two other solutions are x = 3, y = 6, z = 1, and x = 8, y = 9, z = 2. There is a unique plane in three-dimensional space which passes through the three points with these coordinates, and this plane is the set of all points whose coordinates are solutions of the equation.
In binary (base-2) math, multiplication by a power of 2 is merely a register shift operation. Thus, multiplying by 2 is calculated in base-2 by an arithmetic shift. The factor (2 −1) is a right arithmetic shift, a (0) results in no operation (since 2 0 = 1 is the multiplicative identity element), and a (2 1) results in a left arithmetic shift ...
If y = x 3 and y ≠ 0 then each point (x,y) has exactly two tangent lines to γ passing through it (this corresponds to the cubic having one ordinary root and one repeated root). The same is true if y ≠ x 3 and y = 0. If y = x 3 and x = 0, i.e., x = y = 0, then this point has a single tangent line to γ passing through it (this corresponds ...
An example of a more complicated (although small enough to be written here) solution is the unique real root of x 5 − 5x + 12 = 0. Let a = √ 2φ −1, b = √ 2φ, and c = 4 √ 5, where φ = 1+ √ 5 / 2 is the golden ratio. Then the only real solution x = −1.84208... is given by