Search results
Results from the WOW.Com Content Network
Neither the standard model of particle physics nor the theory of general relativity provides a known explanation for why this should be so, and it is a natural assumption that the universe is neutral with all conserved charges. [3] The Big Bang should have produced equal amounts of matter and antimatter. Since this does not seem to have been ...
The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0). The spacetime of ...
All the particles that make up the matter around us, such electrons and protons, have antimatter versions which are nearly identical, but with mirrored properties such as the opposite electric charge.
This imbalance has to be exceptionally small, on the order of 1 in every 1 630 000 000 (≈ 2 × 10 9) particles a small fraction of a second after the Big Bang. [4] After most of the matter and antimatter was annihilated, what remained was all the baryonic matter in the current universe, along with a much greater number of bosons.
Under current theory, the Big Bang explosion that initiated the universe should have produced equal amounts of matter and antimatter. This, however, does not seem to be the case.
Many physicists also believe that inflation explains why the universe appears to be the same in all directions , why the cosmic microwave background radiation is distributed evenly, why the universe is flat, and why no magnetic monopoles have been observed. The detailed particle physics mechanism responsible for inflation is unknown.
The reaction of 1 kg of antimatter with 1 kg of matter would produce 1.8 × 10 17 J (180 petajoules) of energy (by the mass–energy equivalence formula, E=mc 2), or the rough equivalent of 43 megatons of TNT – slightly less than the yield of the 27,000 kg Tsar Bomba, the largest thermonuclear weapon ever detonated.
This suggests that the universe began very dense about 13.787 billion years ago, and it has expanded and (on average) become less dense ever since. [1] Confirmation of the Big Bang mostly depends on knowing the rate of expansion, average density of matter, and the physical properties of the mass–energy in the universe.