Search results
Results from the WOW.Com Content Network
Copper(II) carbonate or cupric carbonate is a chemical compound with formula CuCO 3. At ambient temperatures, it is an ionic solid (a salt) consisting of copper(II) cations Cu 2+ and carbonate anions CO 2− 3. This compound is rarely encountered because it is difficult to prepare [2] and readily reacts with water moisture from the air.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise. The substances are listed in alphabetical order.
Basic copper carbonate is a chemical compound, more properly called copper(II) carbonate hydroxide. It can be classified as a coordination polymer or a salt. It consists of copper(II) bonded to carbonate and hydroxide with formula Cu 2 (CO 3)(OH) 2. It is a green solid that occurs in nature as the mineral malachite.
Copper is a chemical element with the symbol Cu (from Latin: cuprum) and the atomic number of 29. It is easily recognisable, due to its distinct red-orange color.Copper also has a range of different organic and inorganic salts, having varying oxidation states ranging from (0,I) to (III).
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.
They are very reactive towards oxygen to form copper(I) oxide and have many uses in chemistry. They are synthesized by treating copper(I) compounds with Grignard reagents , terminal alkynes or organolithium reagents ; [ 12 ] in particular, the last reaction described produces a Gilman reagent .
The solubility of a specific solute in a specific solvent is generally expressed as the concentration of a saturated solution of the two. [1] Any of the several ways of expressing concentration of solutions can be used, such as the mass, volume, or amount in moles of the solute for a specific mass, volume, or mole amount of the solvent or of the solution.