enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .

  3. Deletion–contraction formula - Wikipedia

    en.wikipedia.org/wiki/Deletion–contraction_formula

    In graph theory, a deletion-contraction formula / recursion is any formula of the following recursive form: = + (/). Here G is a graph, f is a function on graphs, e is any edge of G, G \ e denotes edge deletion, and G / e denotes contraction. Tutte refers to such a function as a W-function. [1]

  4. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects.

  5. Reachability - Wikipedia

    en.wikipedia.org/wiki/Reachability

    In graph theory, reachability refers to the ability to get from one vertex to another within a graph. A vertex s {\displaystyle s} can reach a vertex t {\displaystyle t} (and t {\displaystyle t} is reachable from s {\displaystyle s} ) if there exists a sequence of adjacent vertices (i.e. a walk ) which starts with s {\displaystyle s} and ends ...

  6. Adjacency matrix - Wikipedia

    en.wikipedia.org/wiki/Adjacency_matrix

    One can define the adjacency matrix of a directed graph either such that a non-zero element A ij indicates an edge from i to j or; it indicates an edge from j to i. The former definition is commonly used in graph theory and social network analysis (e.g., sociology, political science, economics, psychology). [5]

  7. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    Spectral graph theory relates properties of a graph to a spectrum, i.e., eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix. Imbalanced weights may undesirably affect the matrix spectrum, leading to the need of normalization — a column/row scaling of the matrix entries ...

  8. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Graphs of y = b x for various bases b: base 10, base e, base 2, base ⁠ 1 / 2 ⁠. Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1 . At x = 1 , the value of y equals the base because any number raised to the power of 1 is the number itself.

  9. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).