enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle). The theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus). [ 1 ]

  3. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    This is a direct consequence of the inscribed angle theorem and the exterior angle theorem. There are no cyclic quadrilaterals with rational area and with unequal rational sides in either arithmetic or geometric progression. [26] If a cyclic quadrilateral has side lengths that form an arithmetic progression the quadrilateral is also ex-bicentric.

  4. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.

  5. Concyclic points - Wikipedia

    en.wikipedia.org/wiki/Concyclic_points

    By Ptolemy's theorem, if a quadrilateral is given by the pairwise distances between its four vertices A, B, C, and D in order, then it is cyclic if and only if the product of the diagonals equals the sum of the products of opposite sides:

  6. Ptolemy's inequality - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_inequality

    Ptolemy's inequality is often stated for a special case, in which the four points are the vertices of a convex quadrilateral, given in cyclic order. [2] [3] However, the theorem applies more generally to any four points; it is not required that the quadrilateral they form be convex, simple, or even planar.

  7. Orthodiagonal quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Orthodiagonal_quadrilateral

    A formula for the area K of a cyclic orthodiagonal quadrilateral in terms of the four sides is obtained directly when combining Ptolemy's theorem and the formula for the area of an orthodiagonal quadrilateral. The result is [10]: p.222 = (+).

  8. Brahmagupta theorem - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta_theorem

    In geometry, Brahmagupta's theorem states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. [1] It is named after the Indian mathematician Brahmagupta (598-668). [2]

  9. Category:Theorems about quadrilaterals and circles - Wikipedia

    en.wikipedia.org/wiki/Category:Theorems_about...

    Brahmagupta theorem; Brahmagupta's formula; J. Japanese theorem for cyclic quadrilaterals; N. ... Pitot theorem; Ptolemy's theorem