Search results
Results from the WOW.Com Content Network
Friction factor may refer to: Atkinson friction factor, a measure of the resistance to airflow of a duct; Darcy friction factor, in fluid dynamics; Fanning friction factor, a dimensionless number used as a local parameter in continuum mechanics
Fanning friction factor for tube flow. This friction factor is one-fourth of the Darcy friction factor, so attention must be paid to note which one of these is meant in the "friction factor" chart or equation consulted. Of the two, the Fanning friction factor is the more commonly used by chemical engineers and those following the British ...
The Darcy friction factor is also known as the Darcy–Weisbach friction factor, resistance coefficient or simply friction factor; by definition it is four times larger than the Fanning friction factor. [1]
Which friction factor is plotted in a Moody diagram may be determined by inspection if the publisher did not include the formula described above: Observe the value of the friction factor for laminar flow at a Reynolds number of 1000. If the value of the friction factor is 0.064, then the Darcy friction factor is plotted in the Moody diagram.
The chart plots Darcy–Weisbach friction factor against Reynolds number Re for a variety of relative roughnesses, the ratio of the mean height of roughness of the pipe to the pipe diameter or /. The Moody chart can be divided into two regimes of flow: laminar and turbulent.
Assuming the Fanning friction factor is a constant along the duct wall, the differential equation can be solved easily. [2] [3] One must keep in mind, however, that the value of the Fanning friction factor can be difficult to determine for supersonic and especially hypersonic flow velocities.
Fluid friction describes the friction between layers of a viscous fluid that are moving relative to each other. [7] [8] Lubricated friction is a case of fluid friction where a lubricant fluid separates two solid surfaces. [9] [10] [11] Skin friction is a component of drag, the force resisting the motion of a fluid across the surface of a body.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.