enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    In most cases, including even simple curves, there are no closed-form solutions for arc length and numerical integration is necessary. Numerical integration of the arc length integral is usually very efficient. For example, consider the problem of finding the length of a quarter of the unit circle by numerically integrating the arc length integral.

  3. Line integral - Wikipedia

    en.wikipedia.org/wiki/Line_integral

    For a line integral over a scalar field, the integral can be constructed from a Riemann sum using the above definitions of f, C and a parametrization r of C. This can be done by partitioning the interval [a, b] into n sub-intervals [t i−1, t i] of length Δt = (b − a)/n, then r(t i) denotes some point, call it a sample point, on the curve C.

  4. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    The arc length of the curve is given by [] = ... After integration by parts in the separate regions and using the Euler–Lagrange equations, ...

  5. Elliptic integral - Wikipedia

    en.wikipedia.org/wiki/Elliptic_integral

    In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler (c. 1750). Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse .

  6. Crofton formula - Wikipedia

    en.wikipedia.org/wiki/Crofton_formula

    In mathematics, the Crofton formula, named after Morgan Crofton (1826–1915), (also Cauchy-Crofton formula) is a classic result of integral geometry relating the length of a curve to the expected number of times a "random" line intersects it.

  7. Pushforward measure - Wikipedia

    en.wikipedia.org/wiki/Pushforward_measure

    The measure f ∗ (λ) might also be called "arc length measure" or "angle measure", since the f ∗ (λ)-measure of an arc in S 1 is precisely its arc length (or, equivalently, the angle that it subtends at the centre of the circle.) The previous example extends nicely to give a natural "Lebesgue measure" on the n-dimensional torus T n.

  8. Parametric surface - Wikipedia

    en.wikipedia.org/wiki/Parametric_surface

    If (u(t), v(t)), a ≤ t ≤ b represents a parametrized curve on this surface then its arc length can be calculated as the integral: ′ + ′ ′ + ′ (). The first fundamental form may be viewed as a family of positive definite symmetric bilinear forms on the tangent plane at each point of the surface depending smoothly on the point.

  9. Derivation of the Schwarzschild solution - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the...

    Now apply the Euler–Lagrange equation to the arc length integral = ... where is an unknown constant of integration. can be determined by ...