Search results
Results from the WOW.Com Content Network
A sine wave, sinusoidal wave, or sinusoid (symbol: ∿) is a periodic wave whose waveform (shape) is the trigonometric sine function. In mechanics , as a linear motion over time, this is simple harmonic motion ; as rotation , it corresponds to uniform circular motion .
When two signals with these waveforms, same period, and opposite phases are added together, the sum + is either identically zero, or is a sinusoidal signal with the same period and phase, whose amplitude is the difference of the original amplitudes. The phase shift of the co-sine function relative to the sine function is +90°.
Graph of a sine wave's voltage vs. time (in degrees), showing RMS, peak (PK), and peak-to-peak (PP) voltages. If the waveform is a pure sine wave, the relationships between amplitudes (peak-to-peak, peak) and RMS are fixed and known, as they are for any continuous periodic wave. However, this is not true for an arbitrary waveform, which may not ...
A sphere rotating around an axis. Points farther from the axis move faster, satisfying ω = v / r.. In physics, angular frequency (symbol ω), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveform or sine function (for example, in oscillations and waves).
Phasor notation (also known as angle notation) is a mathematical notation used in electronics engineering and electrical engineering.A vector whose polar coordinates are magnitude and angle is written . [13] can represent either the vector (, ) or the complex number + =, according to Euler's formula with =, both of which have magnitudes of 1.
A periodic function, also called a periodic waveform (or simply periodic wave), is a function that repeats its values at regular intervals or periods. The repeatable part of the function or waveform is called a cycle. [1] For example, the trigonometric functions, which repeat at intervals of radians, are periodic functions.
In other words, crest factor indicates how extreme the peaks are in a waveform. Crest factor 1 indicates no peaks, such as direct current or a square wave. Higher crest factors indicate peaks, for example sound waves tend to have high crest factors. Crest factor is the peak amplitude of the waveform divided by the RMS value of the waveform.
This sinusoidal model can be fit using nonlinear least squares; to obtain a good fit, routines may require good starting values for the unknown parameters. Fitting a model with a single sinusoid is a special case of spectral density estimation and least-squares spectral analysis .