Search results
Results from the WOW.Com Content Network
The transfer function of a two-port electronic circuit, such as an amplifier, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical actuator might be the mechanical displacement of the movable arm as a function of electric ...
A simple first-order network such as a RC circuit will have a roll-off of 20 dB/decade. This is a little over 6 dB/octave and is the more usual description given for this roll-off. This can be shown to be so by considering the voltage transfer function, A, of the RC network: [1]
, is process transfer function; the input into the block is flow rate and output is tank level. The output as a function of the setpoint, r , is known as the closed-loop transfer function . g c l = g p g c 1 + g p g c , {\displaystyle {\mathit {g_{cl}}}={\frac {\mathit {g_{p}g_{c}}}{1+g_{p}g_{c}}},} If the poles of g c l , {\displaystyle ...
The bilinear transform is a first-order approximation of the natural logarithm function that is an exact mapping of the z-plane to the s-plane. When the Laplace transform is performed on a discrete-time signal (with each element of the discrete-time sequence attached to a correspondingly delayed unit impulse), the result is precisely the Z ...
The transfer function coefficients can also be used to construct another type of canonical form ˙ = [] + [] () = [] (). This state-space realization is called observable canonical form because the resulting model is guaranteed to be observable (i.e., because the output exits from a chain of integrators, every state has an effect on the output).
h() is a transfer function of an impulse response to the input. The convolution allows the filter to only be activated when the input recorded a signal at the same time value. This filter returns the input values (x(t)) if k falls into the support region of function h.
The impulse response (that is, the output in response to a Kronecker delta input) of an N th-order discrete-time FIR filter lasts exactly + samples (from first nonzero element through last nonzero element) before it then settles to zero. FIR filters can be discrete-time or continuous-time, and digital or analog.
The bilinear transform is a first-order Padé approximant of the natural logarithm function that is an exact mapping of the z-plane to the s-plane.When the Laplace transform is performed on a discrete-time signal (with each element of the discrete-time sequence attached to a correspondingly delayed unit impulse), the result is precisely the Z transform of the discrete-time sequence with the ...