Search results
Results from the WOW.Com Content Network
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [ 1 ] and the LaTeX symbol.
In mathematical logic, a sentence (or closed formula) [1] of a predicate logic is a Boolean-valued well-formed formula with no free variables. A sentence can be viewed as expressing a proposition , something that must be true or false.
In mathematical logic, a set of logical formulae is deductively closed if it contains every formula that can be logically deduced from , formally: if always implies .
For predicate logic, the atoms are predicate symbols together with their arguments, each argument being a term. According to some terminology, an open formula is formed by combining atomic formulas using only logical connectives, to the exclusion of quantifiers. [15] This is not to be confused with a formula which is not closed.
In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula.For instance, the universal quantifier in the first order formula () expresses that everything in the domain satisfies the property denoted by .
A subset | | of the domain of a structure is called closed if it is closed under the functions of , that is, if the following condition is satisfied: for every natural number , every -ary function symbol (in the signature of ) and all elements ,, …,, the result of applying to the -tuple … is again an element of : (,, …,).
In first-order logic, a predicate forms an atomic formula when applied to an appropriate number of terms. In set theory with the law of excluded middle , predicates are understood to be characteristic functions or set indicator functions (i.e., functions from a set element to a truth value ).
In mathematical logic, more complex formulas are built from atomic formulas using logical connectives and quantifiers. For example, letting denote the set of real numbers, ∀x: x ∈ ⇒ (x+1)⋅(x+1) ≥ 0 is a mathematical formula evaluating to true in the algebra of complex numbers.