Search results
Results from the WOW.Com Content Network
Steady state determination is an important topic, because many design specifications of electronic systems are given in terms of the steady-state characteristics. Periodic steady-state solution is also a prerequisite for small signal dynamic modeling. Steady-state analysis is therefore an indispensable component of the design process.
The steady state approximation, [1] occasionally called the stationary-state approximation or Bodenstein's quasi-steady state approximation, involves setting the rate of change of a reaction intermediate in a reaction mechanism equal to zero so that the kinetic equations can be simplified by setting the rate of formation of the intermediate equal to the rate of its destruction.
Steady state is reached (attained) after transient (initial, oscillating or turbulent) state has subsided. During steady state, a system is in relative stability. Steady state determination is an important topic, because many design specifications of electronic systems are given in terms of the steady-state characteristics. Periodic steady ...
In biochemistry, steady state refers to the maintenance of constant internal concentrations of molecules and ions in the cells and organs of living systems. [1] Living organisms remain at a dynamic steady state where their internal composition at both cellular and gross levels are relatively constant, but different from equilibrium concentrations. [1]
In biology, homeostasis (British also homoeostasis; / h ɒ m i oʊ ˈ s t eɪ s ɪ s,-m i ə-/ hoh-mee-oh-STAY-sis) is the state of steady internal physical and chemical conditions maintained by living systems. [1]
where is the dosing interval, ss means steady state and 1 stands for a single-dose application. Another definition sets R ac to the ratio of the average drug concentration during one day under steady state conditions to the concentration after a single dose. [2]
A steady-state rate law contains all of the rate constants and species required to go from starting material to product, while the denominator consists of a sum of terms describing the relative rates of the forward and reverse reactions consuming the steady-state intermediate.
One of the most important features of chemostats is that microorganisms can be grown in a physiological steady state under constant environmental conditions. In this steady state, growth occurs at a constant specific growth rate and all culture parameters remain constant (culture volume, dissolved oxygen concentration, nutrient and product concentrations, pH, cell density, etc.).