enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tree (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Tree_(abstract_data_type)

    In computer science, a tree is a widely used abstract data type that represents a hierarchical tree structure with a set of connected nodes. Each node in the tree can be connected to many children (depending on the type of tree), but must be connected to exactly one parent, [ 1 ] [ 2 ] except for the root node, which has no parent (i.e., the ...

  3. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    A labeled binary tree of size 9 (the number of nodes in the tree) and height 3 (the height of a tree defined as the number of edges or links from the top-most or root node to the farthest leaf node), with a root node whose value is 1. The above tree is unbalanced and not sorted.

  4. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.

  5. Binary search tree - Wikipedia

    en.wikipedia.org/wiki/Binary_search_tree

    Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.

  6. m-ary tree - Wikipedia

    en.wikipedia.org/wiki/M-ary_tree

    For an m-ary tree with height h, the upper bound for the maximum number of leaves is . The height h of an m-ary tree does not include the root node, with a tree containing only a root node having a height of 0. The height of a tree is equal to the maximum depth D of any node in the tree.

  7. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:

  8. AVL tree - Wikipedia

    en.wikipedia.org/wiki/AVL_tree

    RB trees require storing one bit of information (the color) in each node, while AVL trees mostly use two bits for the balance factor, although, when stored at the children, one bit with meaning «lower than sibling» suffices. The bigger difference between the two data structures is their height limit. For a tree of size n ≥ 1

  9. Level ancestor problem - Wikipedia

    en.wikipedia.org/wiki/Level_ancestor_problem

    In graph theory and theoretical computer science, the level ancestor problem is the problem of preprocessing a given rooted tree T into a data structure that can determine the ancestor of a given node at a given distance from the root of the tree. More precisely, let T be a rooted tree with n nodes, and let v be an arbitrary node of T.