Search results
Results from the WOW.Com Content Network
Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.
Hard clustering: each object belongs to a cluster or not; Soft clustering (also: fuzzy clustering): each object belongs to each cluster to a certain degree (for example, a likelihood of belonging to the cluster) There are also finer distinctions possible, for example: Strict partitioning clustering: each object belongs to exactly one cluster
The Dunn index (DI) (introduced by J. C. Dunn in 1974) is a metric for evaluating clustering algorithms. [1] [2] This is part of a group of validity indices including the Davies–Bouldin index or Silhouette index, in that it is an internal evaluation scheme, where the result is based on the clustered data itself.
If the data have three clusters, the 2-dimensional plane spanned by three cluster centroids is the best 2-D projection. This plane is also defined by the first two PCA dimensions. Well-separated clusters are effectively modelled by ball-shaped clusters and thus discovered by k-means. Non-ball-shaped clusters are hard to separate when they are ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
In the theory of cluster analysis, the nearest-neighbor chain algorithm is an algorithm that can speed up several methods for agglomerative hierarchical clustering.These are methods that take a collection of points as input, and create a hierarchy of clusters of points by repeatedly merging pairs of smaller clusters to form larger clusters.
To avoid the problems with non-uniform sized or shaped clusters, CURE employs a hierarchical clustering algorithm that adopts a middle ground between the centroid based and all point extremes. In CURE, a constant number c of well scattered points of a cluster are chosen and they are shrunk towards the centroid of the cluster by a fraction α.
Fuzzy c-means; FLAME clustering (Fuzzy clustering by Local Approximation of MEmberships): define clusters in the dense parts of a dataset and perform cluster assignment solely based on the neighborhood relationships among objects; KHOPCA clustering algorithm: a local clustering algorithm, which produces hierarchical multi-hop clusters in static ...