Search results
Results from the WOW.Com Content Network
The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3, or 3 raised to the 5th power. The word "raised" is usually omitted, and sometimes "power" as well, so 3 5 can be simply read "3 to the 5th", or "3 to the 5".
n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n 4 as n “tesseracted”, “hypercubed”, “zenzizenzic”, “biquadrate” or “supercubed” instead of “to the power of 4”.
In arithmetic and algebra, the fifth power or sursolid [1] of a number n is the result of multiplying five instances of n together: n 5 = n × n × n × n × n. Fifth powers are also formed by multiplying a number by its fourth power, or the square of a number by its cube. The sequence of fifth powers of integers is:
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
The term hyperpower [4] is a natural combination of hyper and power, which aptly describes tetration. The problem lies in the meaning of hyper with respect to the hyperoperation sequence. When considering hyperoperations, the term hyper refers to all ranks, and the term super refers to rank 4, or tetration.
256 is a composite number, with the factorization 256 = 2 8, which makes it a power of two. 256 is 4 raised to the 4th power, so in tetration notation, 256 is 2 4. [1] 256 is the value of the expression , where =. 256 is a perfect square (16 2). 256 is the only 3-digit number that is zenzizenzizenzic.
In arithmetic and algebra the sixth power of a number n is the result of multiplying six instances of n together. So: n 6 = n × n × n × n × n × n. Sixth powers can be formed by multiplying a number by its fifth power, multiplying the square of a number by its fourth power, by cubing a square, or by squaring a cube. The sequence of sixth ...
Reflexivity: for every a, one has a = a.; Symmetry: for every a and b, if a = b, then b = a.; Transitivity: for every a, b, and c, if a = b and b = c, then a = c. [7] [8]Substitution: Informally, this just means that if a = b, then a can replace b in any mathematical expression or formula without changing its meaning.