enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbit of Mars - Wikipedia

    en.wikipedia.org/wiki/Orbit_of_Mars

    Mars has an orbit with a semimajor axis of 1.524 astronomical units (228 million km) (12.673 light minutes), and an eccentricity of 0.0934. [1][2] The planet orbits the Sun in 687 days [3] and travels 9.55 AU in doing so, [4] making the average orbital speed 24 km/s. The eccentricity is greater than that of every other planet except Mercury ...

  3. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    Orbit insertion. v. t. e. The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars.

  4. Mars - Wikipedia

    en.wikipedia.org/wiki/Mars

    Mars is the fourth planet from the Sun. The surface of Mars is orange-red because it is covered in iron (III) oxide dust, giving it the nickname " the Red Planet ". [22][23] Mars is among the brightest objects in Earth's sky, and its high-contrast albedo features have made it a common subject for telescope viewing.

  5. Orbital speed - Wikipedia

    en.wikipedia.org/wiki/Orbital_speed

    In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.

  6. Gravity assist - Wikipedia

    en.wikipedia.org/wiki/Gravity_assist

    A gravity assist, gravity assist maneuver, swing-by, or generally a gravitational slingshot in orbital mechanics, is a type of spaceflight flyby which makes use of the relative movement (e.g. orbit around the Sun) and gravity of a planet or other astronomical object to alter the path and speed of a spacecraft, typically to save propellant and reduce expense.

  7. Retrograde and prograde motion - Wikipedia

    en.wikipedia.org/wiki/Retrograde_and_prograde_motion

    Meteoroids in a retrograde orbit around the Sun hit the Earth with a faster relative speed than prograde meteoroids and tend to burn up in the atmosphere and are more likely to hit the side of the Earth facing away from the Sun (i.e. at night) whereas the prograde meteoroids have slower closing speeds and more often land as meteorites and tend ...

  8. Apsidal precession - Wikipedia

    en.wikipedia.org/wiki/Apsidal_precession

    From these and the speed of light (which is ~ 3 × 10 8 m/s), it can be calculated that the apsidal precession during one period of revolution is ε = 5.028 × 10 −7 radians (2.88 × 10 −5 degrees or 0.104″). In one hundred years, Mercury makes approximately 415 revolutions around the Sun, and thus in that time, the apsidal perihelion due ...

  9. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    t. e. In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler in 1609 (except the third law, and was fully published in 1619), describe the orbits of planets around the Sun. These laws replaced circular orbits and epicycles in the heliocentric theory of Nicolaus Copernicus with elliptical orbits and explained how planetary ...