Search results
Results from the WOW.Com Content Network
A scale factor is usually a decimal which scales, or multiplies, some quantity. In the equation y = Cx, C is the scale factor for x. C is also the coefficient of x, and may be called the constant of proportionality of y to x. For example, doubling distances corresponds to a scale factor of two for distance, while cutting a cake in half results ...
A unit distance graph with 16 vertices and 40 edges. In mathematics, particularly geometric graph theory, a unit distance graph is a graph formed from a collection of points in the Euclidean plane by connecting two points whenever the distance between them is exactly one.
A 1-planar graph is a graph that may be drawn in the plane with at most one simple crossing per edge, and a k-planar graph is a graph that may be drawn with at most k simple crossings per edge. A map graph is a graph formed from a set of finitely many simply-connected interior-disjoint regions in the plane by connecting two regions when they ...
The plane containing the two vectors T(s) and N(s) is the osculating plane to the curve at γ(s). The curvature has the following geometrical interpretation. There exists a circle in the osculating plane tangent to γ(s) whose Taylor series to second order at the point of contact agrees with that of γ(s). This is the osculating circle to the ...
Conversely, it is easily shown that if a, b, c, and d are constants and a, b, and c are not all zero, then the graph of the equation + + + =, is a plane having the vector n = (a, b, c) as a normal. [5] This familiar equation for a plane is called the general form of the equation of the plane or just the plane equation. [6]
In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...
Plane section of the unit sphere (see example) Solution: The scaling u = x / a , v = y / b , w = z / c transforms the ellipsoid onto the unit sphere u 2 + v 2 + w 2 = 1 and the given plane onto the plane with equation + + =. Let m u u + m v v + m w w = δ be the Hesse normal form of the new plane and
The Sierpinski triangle is a union of three copies of itself, each copy shrunk by a factor of 1/2; this yields a Hausdorff dimension of ln(3)/ln(2) ≈ 1.58. [1] These Hausdorff dimensions are related to the "critical exponent" of the Master theorem for solving recurrence relations in the analysis of algorithms.